IP Configuration

This commit is contained in:
Gašper Dobrovoljc
2023-03-11 15:11:03 +01:00
commit ec125f27db
662 changed files with 103738 additions and 0 deletions

823
lib/RCSwitch/RCSwitch.cpp Normal file
View File

@@ -0,0 +1,823 @@
/*
RCSwitch - Arduino libary for remote control outlet switches
Copyright (c) 2011 Suat <20>zg<7A>r. All right reserved.
Contributors:
- Andre Koehler / info(at)tomate-online(dot)de
- Gordeev Andrey Vladimirovich / gordeev(at)openpyro(dot)com
- Skineffect / http://forum.ardumote.com/viewtopic.php?f=2&t=46
- Dominik Fischer / dom_fischer(at)web(dot)de
- Frank Oltmanns / <first name>.<last name>(at)gmail(dot)com
- Andreas Steinel / A.<lastname>(at)gmail(dot)com
Project home: http://code.google.com/p/rc-switch/
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "RCSwitch.h"
#if not defined( RCSwitchDisableReceiving )
unsigned long RCSwitch::nReceivedValue = NULL;
unsigned int RCSwitch::nReceivedBitlength = 0;
unsigned int RCSwitch::nReceivedDelay = 0;
unsigned int RCSwitch::nReceivedProtocol = 0;
int RCSwitch::nReceiveTolerance = 60;
#endif
unsigned int RCSwitch::timings[RCSWITCH_MAX_CHANGES];
RCSwitch::RCSwitch() {
this->nTransmitterPin = -1;
this->setPulseLength(350);
this->setRepeatTransmit(10);
this->setProtocol(1);
#if not defined( RCSwitchDisableReceiving )
this->nReceiverInterrupt = -1;
this->setReceiveTolerance(60);
RCSwitch::nReceivedValue = NULL;
#endif
}
/**
* Sets the protocol to send.
*/
void RCSwitch::setProtocol(int nProtocol) {
this->nProtocol = nProtocol;
if (nProtocol == 1){
this->setPulseLength(350);
}
else if (nProtocol == 2) {
this->setPulseLength(650);
}
else if (nProtocol == 3) {
this->setPulseLength(100);
}
}
/**
* Sets the protocol to send with pulse length in microseconds.
*/
void RCSwitch::setProtocol(int nProtocol, int nPulseLength) {
this->nProtocol = nProtocol;
this->setPulseLength(nPulseLength);
}
/**
* Sets pulse length in microseconds
*/
void RCSwitch::setPulseLength(int nPulseLength) {
this->nPulseLength = nPulseLength;
}
/**
* Sets Repeat Transmits
*/
void RCSwitch::setRepeatTransmit(int nRepeatTransmit) {
this->nRepeatTransmit = nRepeatTransmit;
}
/**
* Set Receiving Tolerance
*/
#if not defined( RCSwitchDisableReceiving )
void RCSwitch::setReceiveTolerance(int nPercent) {
RCSwitch::nReceiveTolerance = nPercent;
}
#endif
/**
* Enable transmissions
*
* @param nTransmitterPin Arduino Pin to which the sender is connected to
*/
void RCSwitch::enableTransmit(int nTransmitterPin) {
this->nTransmitterPin = nTransmitterPin;
pinMode(this->nTransmitterPin, OUTPUT);
}
/**
* Disable transmissions
*/
void RCSwitch::disableTransmit() {
this->nTransmitterPin = -1;
}
/**
* Switch a remote switch on (Type D REV)
*
* @param sGroup Code of the switch group (A,B,C,D)
* @param nDevice Number of the switch itself (1..3)
*/
void RCSwitch::switchOn(char sGroup, int nDevice) {
this->sendTriState( this->getCodeWordD(sGroup, nDevice, true) );
}
/**
* Switch a remote switch off (Type D REV)
*
* @param sGroup Code of the switch group (A,B,C,D)
* @param nDevice Number of the switch itself (1..3)
*/
void RCSwitch::switchOff(char sGroup, int nDevice) {
this->sendTriState( this->getCodeWordD(sGroup, nDevice, false) );
}
/**
* Switch a remote switch on (Type C Intertechno)
*
* @param sFamily Familycode (a..f)
* @param nGroup Number of group (1..4)
* @param nDevice Number of device (1..4)
*/
void RCSwitch::switchOn(char sFamily, int nGroup, int nDevice) {
this->sendTriState( this->getCodeWordC(sFamily, nGroup, nDevice, true) );
}
/**
* Switch a remote switch off (Type C Intertechno)
*
* @param sFamily Familycode (a..f)
* @param nGroup Number of group (1..4)
* @param nDevice Number of device (1..4)
*/
void RCSwitch::switchOff(char sFamily, int nGroup, int nDevice) {
this->sendTriState( this->getCodeWordC(sFamily, nGroup, nDevice, false) );
}
/**
* Switch a remote switch on (Type B with two rotary/sliding switches)
*
* @param nAddressCode Number of the switch group (1..4)
* @param nChannelCode Number of the switch itself (1..4)
*/
void RCSwitch::switchOn(int nAddressCode, int nChannelCode) {
this->sendTriState( this->getCodeWordB(nAddressCode, nChannelCode, true) );
}
/**
* Switch a remote switch off (Type B with two rotary/sliding switches)
*
* @param nAddressCode Number of the switch group (1..4)
* @param nChannelCode Number of the switch itself (1..4)
*/
void RCSwitch::switchOff(int nAddressCode, int nChannelCode) {
this->sendTriState( this->getCodeWordB(nAddressCode, nChannelCode, false) );
}
/**
* Deprecated, use switchOn(char* sGroup, char* sDevice) instead!
* Switch a remote switch on (Type A with 10 pole DIP switches)
*
* @param sGroup Code of the switch group (refers to DIP switches 1..5 where "1" = on and "0" = off, if all DIP switches are on it's "11111")
* @param nChannelCode Number of the switch itself (1..5)
*/
void RCSwitch::switchOn(char* sGroup, int nChannel) {
char* code[6] = { "00000", "10000", "01000", "00100", "00010", "00001" };
this->switchOn(sGroup, code[nChannel]);
}
/**
* Deprecated, use switchOff(char* sGroup, char* sDevice) instead!
* Switch a remote switch off (Type A with 10 pole DIP switches)
*
* @param sGroup Code of the switch group (refers to DIP switches 1..5 where "1" = on and "0" = off, if all DIP switches are on it's "11111")
* @param nChannelCode Number of the switch itself (1..5)
*/
void RCSwitch::switchOff(char* sGroup, int nChannel) {
char* code[6] = { "00000", "10000", "01000", "00100", "00010", "00001" };
this->switchOff(sGroup, code[nChannel]);
}
/**
* Switch a remote switch on (Type A with 10 pole DIP switches)
*
* @param sGroup Code of the switch group (refers to DIP switches 1..5 where "1" = on and "0" = off, if all DIP switches are on it's "11111")
* @param sDevice Code of the switch device (refers to DIP switches 6..10 (A..E) where "1" = on and "0" = off, if all DIP switches are on it's "11111")
*/
void RCSwitch::switchOn(char* sGroup, char* sDevice) {
this->sendTriState( this->getCodeWordA(sGroup, sDevice, true) );
}
/**
* Switch a remote switch off (Type A with 10 pole DIP switches)
*
* @param sGroup Code of the switch group (refers to DIP switches 1..5 where "1" = on and "0" = off, if all DIP switches are on it's "11111")
* @param sDevice Code of the switch device (refers to DIP switches 6..10 (A..E) where "1" = on and "0" = off, if all DIP switches are on it's "11111")
*/
void RCSwitch::switchOff(char* sGroup, char* sDevice) {
this->sendTriState( this->getCodeWordA(sGroup, sDevice, false) );
}
/**
* Returns a char[13], representing the Code Word to be send.
* A Code Word consists of 9 address bits, 3 data bits and one sync bit but in our case only the first 8 address bits and the last 2 data bits were used.
* A Code Bit can have 4 different states: "F" (floating), "0" (low), "1" (high), "S" (synchronous bit)
*
* +-------------------------------+--------------------------------+-----------------------------------------+-----------------------------------------+----------------------+------------+
* | 4 bits address (switch group) | 4 bits address (switch number) | 1 bit address (not used, so never mind) | 1 bit address (not used, so never mind) | 2 data bits (on|off) | 1 sync bit |
* | 1=0FFF 2=F0FF 3=FF0F 4=FFF0 | 1=0FFF 2=F0FF 3=FF0F 4=FFF0 | F | F | on=FF off=F0 | S |
* +-------------------------------+--------------------------------+-----------------------------------------+-----------------------------------------+----------------------+------------+
*
* @param nAddressCode Number of the switch group (1..4)
* @param nChannelCode Number of the switch itself (1..4)
* @param bStatus Wether to switch on (true) or off (false)
*
* @return char[13]
*/
char* RCSwitch::getCodeWordB(int nAddressCode, int nChannelCode, boolean bStatus) {
int nReturnPos = 0;
static char sReturn[13];
char* code[5] = { "FFFF", "0FFF", "F0FF", "FF0F", "FFF0" };
if (nAddressCode < 1 || nAddressCode > 4 || nChannelCode < 1 || nChannelCode > 4) {
return '\0';
}
for (int i = 0; i<4; i++) {
sReturn[nReturnPos++] = code[nAddressCode][i];
}
for (int i = 0; i<4; i++) {
sReturn[nReturnPos++] = code[nChannelCode][i];
}
sReturn[nReturnPos++] = 'F';
sReturn[nReturnPos++] = 'F';
sReturn[nReturnPos++] = 'F';
if (bStatus) {
sReturn[nReturnPos++] = 'F';
} else {
sReturn[nReturnPos++] = '0';
}
sReturn[nReturnPos] = '\0';
return sReturn;
}
/**
* Returns a char[13], representing the Code Word to be send.
*
* getCodeWordA(char*, char*)
*
*/
char* RCSwitch::getCodeWordA(char* sGroup, char* sDevice, boolean bOn) {
static char sDipSwitches[13];
int i = 0;
int j = 0;
for (i=0; i < 5; i++) {
if (sGroup[i] == '0') {
sDipSwitches[j++] = 'F';
} else {
sDipSwitches[j++] = '0';
}
}
for (i=0; i < 5; i++) {
if (sDevice[i] == '0') {
sDipSwitches[j++] = 'F';
} else {
sDipSwitches[j++] = '0';
}
}
if ( bOn ) {
sDipSwitches[j++] = '0';
sDipSwitches[j++] = 'F';
} else {
sDipSwitches[j++] = 'F';
sDipSwitches[j++] = '0';
}
sDipSwitches[j] = '\0';
return sDipSwitches;
}
/**
* Like getCodeWord (Type C = Intertechno)
*/
char* RCSwitch::getCodeWordC(char sFamily, int nGroup, int nDevice, boolean bStatus) {
static char sReturn[13];
int nReturnPos = 0;
if ( (byte)sFamily < 97 || (byte)sFamily > 112 || nGroup < 1 || nGroup > 4 || nDevice < 1 || nDevice > 4) {
return '\0';
}
char* sDeviceGroupCode = dec2binWzerofill( (nDevice-1) + (nGroup-1)*4, 4 );
char familycode[16][5] = { "0000", "F000", "0F00", "FF00", "00F0", "F0F0", "0FF0", "FFF0", "000F", "F00F", "0F0F", "FF0F", "00FF", "F0FF", "0FFF", "FFFF" };
for (int i = 0; i<4; i++) {
sReturn[nReturnPos++] = familycode[ (int)sFamily - 97 ][i];
}
for (int i = 0; i<4; i++) {
sReturn[nReturnPos++] = (sDeviceGroupCode[3-i] == '1' ? 'F' : '0');
}
sReturn[nReturnPos++] = '0';
sReturn[nReturnPos++] = 'F';
sReturn[nReturnPos++] = 'F';
if (bStatus) {
sReturn[nReturnPos++] = 'F';
} else {
sReturn[nReturnPos++] = '0';
}
sReturn[nReturnPos] = '\0';
return sReturn;
}
/**
* Decoding for the REV Switch Type
*
* Returns a char[13], representing the Tristate to be send.
* A Code Word consists of 7 address bits and 5 command data bits.
* A Code Bit can have 3 different states: "F" (floating), "0" (low), "1" (high)
*
* +-------------------------------+--------------------------------+-----------------------+
* | 4 bits address (switch group) | 3 bits address (device number) | 5 bits (command data) |
* | A=1FFF B=F1FF C=FF1F D=FFF1 | 1=0FFF 2=F0FF 3=FF0F 4=FFF0 | on=00010 off=00001 |
* +-------------------------------+--------------------------------+-----------------------+
*
* Source: http://www.the-intruder.net/funksteckdosen-von-rev-uber-arduino-ansteuern/
*
* @param sGroup Name of the switch group (A..D, resp. a..d)
* @param nDevice Number of the switch itself (1..3)
* @param bStatus Wether to switch on (true) or off (false)
*
* @return char[13]
*/
char* RCSwitch::getCodeWordD(char sGroup, int nDevice, boolean bStatus){
static char sReturn[13];
int nReturnPos = 0;
// Building 4 bits address
// (Potential problem if dec2binWcharfill not returning correct string)
char *sGroupCode;
switch(sGroup){
case 'a':
case 'A':
sGroupCode = dec2binWcharfill(8, 4, 'F'); break;
case 'b':
case 'B':
sGroupCode = dec2binWcharfill(4, 4, 'F'); break;
case 'c':
case 'C':
sGroupCode = dec2binWcharfill(2, 4, 'F'); break;
case 'd':
case 'D':
sGroupCode = dec2binWcharfill(1, 4, 'F'); break;
default:
return '\0';
}
for (int i = 0; i<4; i++)
{
sReturn[nReturnPos++] = sGroupCode[i];
}
// Building 3 bits address
// (Potential problem if dec2binWcharfill not returning correct string)
char *sDevice;
switch(nDevice) {
case 1:
sDevice = dec2binWcharfill(4, 3, 'F'); break;
case 2:
sDevice = dec2binWcharfill(2, 3, 'F'); break;
case 3:
sDevice = dec2binWcharfill(1, 3, 'F'); break;
default:
return '\0';
}
for (int i = 0; i<3; i++)
sReturn[nReturnPos++] = sDevice[i];
// fill up rest with zeros
for (int i = 0; i<5; i++)
sReturn[nReturnPos++] = '0';
// encode on or off
if (bStatus)
sReturn[10] = '1';
else
sReturn[11] = '1';
// last position terminate string
sReturn[12] = '\0';
return sReturn;
}
/**
* @param sCodeWord /^[10FS]*$/ -> see getCodeWord
*/
void RCSwitch::sendTriState(char* sCodeWord) {
for (int nRepeat=0; nRepeat<nRepeatTransmit; nRepeat++) {
int i = 0;
while (sCodeWord[i] != '\0') {
switch(sCodeWord[i]) {
case '0':
this->sendT0();
break;
case 'F':
this->sendTF();
break;
case '1':
this->sendT1();
break;
}
i++;
}
this->sendSync();
}
}
void RCSwitch::send(unsigned long Code, unsigned int length) {
this->send( this->dec2binWzerofill(Code, length) );
}
void RCSwitch::send(char* sCodeWord) {
for (int nRepeat=0; nRepeat<nRepeatTransmit; nRepeat++) {
int i = 0;
while (sCodeWord[i] != '\0') {
switch(sCodeWord[i]) {
case '0':
this->send0();
break;
case '1':
this->send1();
break;
}
i++;
}
this->sendSync();
}
}
void RCSwitch::transmit(int nHighPulses, int nLowPulses) {
#if not defined ( RCSwitchDisableReceiving )
boolean disabled_Receive = false;
int nReceiverInterrupt_backup = nReceiverInterrupt;
#endif
if (this->nTransmitterPin != -1) {
#if not defined( RCSwitchDisableReceiving )
if (this->nReceiverInterrupt != -1) {
this->disableReceive();
disabled_Receive = true;
}
#endif
digitalWrite(this->nTransmitterPin, HIGH);
delayMicroseconds( this->nPulseLength * nHighPulses);
digitalWrite(this->nTransmitterPin, LOW);
delayMicroseconds( this->nPulseLength * nLowPulses);
#if not defined( RCSwitchDisableReceiving )
if(disabled_Receive){
this->enableReceive(nReceiverInterrupt_backup);
}
#endif
}
}
/**
* Sends a "0" Bit
* _
* Waveform Protocol 1: | |___
* _
* Waveform Protocol 2: | |__
*/
void RCSwitch::send0() {
if (this->nProtocol == 1){
this->transmit(1,3);
}
else if (this->nProtocol == 2) {
this->transmit(1,2);
}
else if (this->nProtocol == 3) {
this->transmit(4,11);
}
}
/**
* Sends a "1" Bit
* ___
* Waveform Protocol 1: | |_
* __
* Waveform Protocol 2: | |_
*/
void RCSwitch::send1() {
if (this->nProtocol == 1){
this->transmit(3,1);
}
else if (this->nProtocol == 2) {
this->transmit(2,1);
}
else if (this->nProtocol == 3) {
this->transmit(9,6);
}
}
/**
* Sends a Tri-State "0" Bit
* _ _
* Waveform: | |___| |___
*/
void RCSwitch::sendT0() {
this->transmit(1,3);
this->transmit(1,3);
}
/**
* Sends a Tri-State "1" Bit
* ___ ___
* Waveform: | |_| |_
*/
void RCSwitch::sendT1() {
this->transmit(3,1);
this->transmit(3,1);
}
/**
* Sends a Tri-State "F" Bit
* _ ___
* Waveform: | |___| |_
*/
void RCSwitch::sendTF() {
this->transmit(1,3);
this->transmit(3,1);
}
/**
* Sends a "Sync" Bit
* _
* Waveform Protocol 1: | |_______________________________
* _
* Waveform Protocol 2: | |__________
*/
void RCSwitch::sendSync() {
if (this->nProtocol == 1){
this->transmit(1,31);
}
else if (this->nProtocol == 2) {
this->transmit(1,10);
}
else if (this->nProtocol == 3) {
this->transmit(1,71);
}
}
#if not defined( RCSwitchDisableReceiving )
/**
* Enable receiving data
*/
void RCSwitch::enableReceive(int interrupt) {
this->nReceiverInterrupt = interrupt;
this->enableReceive();
}
void RCSwitch::enableReceive() {
if (this->nReceiverInterrupt != -1) {
RCSwitch::nReceivedValue = NULL;
RCSwitch::nReceivedBitlength = NULL;
attachInterrupt(this->nReceiverInterrupt, handleInterrupt, CHANGE);
}
}
/**
* Disable receiving data
*/
void RCSwitch::disableReceive() {
detachInterrupt(this->nReceiverInterrupt);
this->nReceiverInterrupt = -1;
}
bool RCSwitch::available() {
return RCSwitch::nReceivedValue != NULL;
}
void RCSwitch::resetAvailable() {
RCSwitch::nReceivedValue = NULL;
}
unsigned long RCSwitch::getReceivedValue() {
return RCSwitch::nReceivedValue;
}
unsigned int RCSwitch::getReceivedBitlength() {
return RCSwitch::nReceivedBitlength;
}
unsigned int RCSwitch::getReceivedDelay() {
return RCSwitch::nReceivedDelay;
}
unsigned int RCSwitch::getReceivedProtocol() {
return RCSwitch::nReceivedProtocol;
}
unsigned int* RCSwitch::getReceivedRawdata() {
return RCSwitch::timings;
}
/**
*
*/
bool RCSwitch::receiveProtocol1(unsigned int changeCount){
unsigned long code = 0;
unsigned long delay = RCSwitch::timings[0] / 31;
unsigned long delayTolerance = delay * RCSwitch::nReceiveTolerance * 0.01;
for (int i = 1; i<changeCount ; i=i+2) {
if (RCSwitch::timings[i] > delay-delayTolerance && RCSwitch::timings[i] < delay+delayTolerance && RCSwitch::timings[i+1] > delay*3-delayTolerance && RCSwitch::timings[i+1] < delay*3+delayTolerance) {
code = code << 1;
} else if (RCSwitch::timings[i] > delay*3-delayTolerance && RCSwitch::timings[i] < delay*3+delayTolerance && RCSwitch::timings[i+1] > delay-delayTolerance && RCSwitch::timings[i+1] < delay+delayTolerance) {
code+=1;
code = code << 1;
} else {
// Failed
i = changeCount;
code = 0;
}
}
code = code >> 1;
if (changeCount > 6) { // ignore < 4bit values as there are no devices sending 4bit values => noise
RCSwitch::nReceivedValue = code;
RCSwitch::nReceivedBitlength = changeCount / 2;
RCSwitch::nReceivedDelay = delay;
RCSwitch::nReceivedProtocol = 1;
}
if (code == 0){
return false;
}else if (code != 0){
return true;
}
}
bool RCSwitch::receiveProtocol2(unsigned int changeCount){
unsigned long code = 0;
unsigned long delay = RCSwitch::timings[0] / 10;
unsigned long delayTolerance = delay * RCSwitch::nReceiveTolerance * 0.01;
for (int i = 1; i<changeCount ; i=i+2) {
if (RCSwitch::timings[i] > delay-delayTolerance && RCSwitch::timings[i] < delay+delayTolerance && RCSwitch::timings[i+1] > delay*2-delayTolerance && RCSwitch::timings[i+1] < delay*2+delayTolerance) {
code = code << 1;
} else if (RCSwitch::timings[i] > delay*2-delayTolerance && RCSwitch::timings[i] < delay*2+delayTolerance && RCSwitch::timings[i+1] > delay-delayTolerance && RCSwitch::timings[i+1] < delay+delayTolerance) {
code+=1;
code = code << 1;
} else {
// Failed
i = changeCount;
code = 0;
}
}
code = code >> 1;
if (changeCount > 6) { // ignore < 4bit values as there are no devices sending 4bit values => noise
RCSwitch::nReceivedValue = code;
RCSwitch::nReceivedBitlength = changeCount / 2;
RCSwitch::nReceivedDelay = delay;
RCSwitch::nReceivedProtocol = 2;
}
if (code == 0){
return false;
}else if (code != 0){
return true;
}
}
/** Protocol 3 is used by BL35P02.
*
*/
bool RCSwitch::receiveProtocol3(unsigned int changeCount){
unsigned long code = 0;
unsigned long delay = RCSwitch::timings[0] / PROTOCOL3_SYNC_FACTOR;
unsigned long delayTolerance = delay * RCSwitch::nReceiveTolerance * 0.01;
for (int i = 1; i<changeCount ; i=i+2) {
if (RCSwitch::timings[i] > delay*PROTOCOL3_0_HIGH_CYCLES - delayTolerance
&& RCSwitch::timings[i] < delay*PROTOCOL3_0_HIGH_CYCLES + delayTolerance
&& RCSwitch::timings[i+1] > delay*PROTOCOL3_0_LOW_CYCLES - delayTolerance
&& RCSwitch::timings[i+1] < delay*PROTOCOL3_0_LOW_CYCLES + delayTolerance) {
code = code << 1;
} else if (RCSwitch::timings[i] > delay*PROTOCOL3_1_HIGH_CYCLES - delayTolerance
&& RCSwitch::timings[i] < delay*PROTOCOL3_1_HIGH_CYCLES + delayTolerance
&& RCSwitch::timings[i+1] > delay*PROTOCOL3_1_LOW_CYCLES - delayTolerance
&& RCSwitch::timings[i+1] < delay*PROTOCOL3_1_LOW_CYCLES + delayTolerance) {
code+=1;
code = code << 1;
} else {
// Failed
i = changeCount;
code = 0;
}
}
code = code >> 1;
if (changeCount > 6) { // ignore < 4bit values as there are no devices sending 4bit values => noise
RCSwitch::nReceivedValue = code;
RCSwitch::nReceivedBitlength = changeCount / 2;
RCSwitch::nReceivedDelay = delay;
RCSwitch::nReceivedProtocol = 3;
}
if (code == 0){
return false;
}else if (code != 0){
return true;
}
}
void RCSwitch::handleInterrupt() {
static unsigned int duration;
static unsigned int changeCount;
static unsigned long lastTime;
static unsigned int repeatCount;
long time = micros();
duration = time - lastTime;
if (duration > 5000 && duration > RCSwitch::timings[0] - 200 && duration < RCSwitch::timings[0] + 200) {
repeatCount++;
changeCount--;
if (repeatCount == 2) {
if (receiveProtocol1(changeCount) == false){
if (receiveProtocol2(changeCount) == false){
if (receiveProtocol3(changeCount) == false){
//failed
}
}
}
repeatCount = 0;
}
changeCount = 0;
} else if (duration > 5000) {
changeCount = 0;
}
if (changeCount >= RCSWITCH_MAX_CHANGES) {
changeCount = 0;
repeatCount = 0;
}
RCSwitch::timings[changeCount++] = duration;
lastTime = time;
}
#endif
/**
* Turns a decimal value to its binary representation
*/
char* RCSwitch::dec2binWzerofill(unsigned long Dec, unsigned int bitLength){
return dec2binWcharfill(Dec, bitLength, '0');
}
char* RCSwitch::dec2binWcharfill(unsigned long Dec, unsigned int bitLength, char fill){
static char bin[64];
unsigned int i=0;
while (Dec > 0) {
bin[32+i++] = ((Dec & 1) > 0) ? '1' : fill;
Dec = Dec >> 1;
}
for (unsigned int j = 0; j< bitLength; j++) {
if (j >= bitLength - i) {
bin[j] = bin[ 31 + i - (j - (bitLength - i)) ];
}else {
bin[j] = fill;
}
}
bin[bitLength] = '\0';
return bin;
}

144
lib/RCSwitch/RCSwitch.h Normal file
View File

@@ -0,0 +1,144 @@
/*
RCSwitch - Arduino libary for remote control outlet switches
Copyright (c) 2011 Suat <20>zg<7A>r. All right reserved.
Contributors:
- Andre Koehler / info(at)tomate-online(dot)de
- Gordeev Andrey Vladimirovich / gordeev(at)openpyro(dot)com
- Skineffect / http://forum.ardumote.com/viewtopic.php?f=2&t=46
- Dominik Fischer / dom_fischer(at)web(dot)de
- Frank Oltmanns / <first name>.<last name>(at)gmail(dot)com
Project home: http://code.google.com/p/rc-switch/
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _RCSwitch_h
#define _RCSwitch_h
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#elif defined(ENERGIA) // LaunchPad, FraunchPad and StellarPad specific
#include "Energia.h"
#else
#include "WProgram.h"
#endif
// At least for the ATTiny X4/X5, receiving has to be disabled due to
// missing libm depencies (udivmodhi4)
#if defined( __AVR_ATtinyX5__ ) or defined ( __AVR_ATtinyX4__ )
#define RCSwitchDisableReceiving
#endif
// Number of maximum High/Low changes per packet.
// We can handle up to (unsigned long) => 32 bit * 2 H/L changes per bit + 2 for sync
#define RCSWITCH_MAX_CHANGES 67
#define PROTOCOL3_SYNC_FACTOR 71
#define PROTOCOL3_0_HIGH_CYCLES 4
#define PROTOCOL3_0_LOW_CYCLES 11
#define PROTOCOL3_1_HIGH_CYCLES 9
#define PROTOCOL3_1_LOW_CYCLES 6
class RCSwitch {
public:
RCSwitch();
void switchOn(int nGroupNumber, int nSwitchNumber);
void switchOff(int nGroupNumber, int nSwitchNumber);
void switchOn(char* sGroup, int nSwitchNumber);
void switchOff(char* sGroup, int nSwitchNumber);
void switchOn(char sFamily, int nGroup, int nDevice);
void switchOff(char sFamily, int nGroup, int nDevice);
void switchOn(char* sGroup, char* sDevice);
void switchOff(char* sGroup, char* sDevice);
void switchOn(char sGroup, int nDevice);
void switchOff(char sGroup, int nDevice);
void sendTriState(char* Code);
void send(unsigned long Code, unsigned int length);
void send(char* Code);
#if not defined( RCSwitchDisableReceiving )
void enableReceive(int interrupt);
void enableReceive();
void disableReceive();
bool available();
void resetAvailable();
unsigned long getReceivedValue();
unsigned int getReceivedBitlength();
unsigned int getReceivedDelay();
unsigned int getReceivedProtocol();
unsigned int* getReceivedRawdata();
#endif
void enableTransmit(int nTransmitterPin);
void disableTransmit();
void setPulseLength(int nPulseLength);
void setRepeatTransmit(int nRepeatTransmit);
#if not defined( RCSwitchDisableReceiving )
void setReceiveTolerance(int nPercent);
#endif
void setProtocol(int nProtocol);
void setProtocol(int nProtocol, int nPulseLength);
private:
char* getCodeWordB(int nGroupNumber, int nSwitchNumber, boolean bStatus);
char* getCodeWordA(char* sGroup, int nSwitchNumber, boolean bStatus);
char* getCodeWordA(char* sGroup, char* sDevice, boolean bStatus);
char* getCodeWordC(char sFamily, int nGroup, int nDevice, boolean bStatus);
char* getCodeWordD(char group, int nDevice, boolean bStatus);
void sendT0();
void sendT1();
void sendTF();
void send0();
void send1();
void sendSync();
void transmit(int nHighPulses, int nLowPulses);
static char* dec2binWzerofill(unsigned long dec, unsigned int length);
static char* dec2binWcharfill(unsigned long dec, unsigned int length, char fill);
#if not defined( RCSwitchDisableReceiving )
static void handleInterrupt();
static bool receiveProtocol1(unsigned int changeCount);
static bool receiveProtocol2(unsigned int changeCount);
static bool receiveProtocol3(unsigned int changeCount);
int nReceiverInterrupt;
#endif
int nTransmitterPin;
int nPulseLength;
int nRepeatTransmit;
char nProtocol;
#if not defined( RCSwitchDisableReceiving )
static int nReceiveTolerance;
static unsigned long nReceivedValue;
static unsigned int nReceivedBitlength;
static unsigned int nReceivedDelay;
static unsigned int nReceivedProtocol;
#endif
/*
* timings[0] contains sync timing, followed by a number of bits
*/
static unsigned int timings[RCSWITCH_MAX_CHANGES];
};
#endif

View File

@@ -0,0 +1,24 @@
/*
Example for receiving
http://code.google.com/p/rc-switch/
If you want to visualize a telegram copy the raw data and
paste it into http://test.sui.li/oszi/
*/
#include <RCSwitch.h>
RCSwitch mySwitch = RCSwitch();
void setup() {
Serial.begin(9600);
mySwitch.enableReceive(0); // Receiver on inerrupt 0 => that is pin #2
}
void loop() {
if (mySwitch.available()) {
output(mySwitch.getReceivedValue(), mySwitch.getReceivedBitlength(), mySwitch.getReceivedDelay(), mySwitch.getReceivedRawdata(),mySwitch.getReceivedProtocol());
mySwitch.resetAvailable();
}
}

View File

@@ -0,0 +1,20 @@
static char * dec2binWzerofill(unsigned long Dec, unsigned int bitLength){
static char bin[64];
unsigned int i=0;
while (Dec > 0) {
bin[32+i++] = (Dec & 1 > 0) ? '1' : '0';
Dec = Dec >> 1;
}
for (unsigned int j = 0; j< bitLength; j++) {
if (j >= bitLength - i) {
bin[j] = bin[ 31 + i - (j - (bitLength - i)) ];
}else {
bin[j] = '0';
}
}
bin[bitLength] = '\0';
return bin;
}

View File

@@ -0,0 +1,52 @@
void output(unsigned long decimal, unsigned int length, unsigned int delay, unsigned int* raw, unsigned int protocol) {
if (decimal == 0) {
Serial.print("Unknown encoding.");
} else {
char* b = dec2binWzerofill(decimal, length);
Serial.print("Decimal: ");
Serial.print(decimal);
Serial.print(" (");
Serial.print( length );
Serial.print("Bit) Binary: ");
Serial.print( b );
Serial.print(" Tri-State: ");
Serial.print( bin2tristate( b) );
Serial.print(" PulseLength: ");
Serial.print(delay);
Serial.print(" microseconds");
Serial.print(" Protocol: ");
Serial.println(protocol);
}
Serial.print("Raw data: ");
for (int i=0; i<= length*2; i++) {
Serial.print(raw[i]);
Serial.print(",");
}
Serial.println();
Serial.println();
}
static char* bin2tristate(char* bin) {
char returnValue[50];
int pos = 0;
int pos2 = 0;
while (bin[pos]!='\0' && bin[pos+1]!='\0') {
if (bin[pos]=='0' && bin[pos+1]=='0') {
returnValue[pos2] = '0';
} else if (bin[pos]=='1' && bin[pos+1]=='1') {
returnValue[pos2] = '1';
} else if (bin[pos]=='0' && bin[pos+1]=='1') {
returnValue[pos2] = 'F';
} else {
return "not applicable";
}
pos = pos+2;
pos2++;
}
returnValue[pos2] = '\0';
return returnValue;
}

View File

@@ -0,0 +1,35 @@
/*
Simple example for receiving
http://code.google.com/p/rc-switch/
*/
#include <RCSwitch.h>
RCSwitch mySwitch = RCSwitch();
void setup() {
Serial.begin(9600);
mySwitch.enableReceive(0); // Receiver on inerrupt 0 => that is pin #2
}
void loop() {
if (mySwitch.available()) {
int value = mySwitch.getReceivedValue();
if (value == 0) {
Serial.print("Unknown encoding");
} else {
Serial.print("Received ");
Serial.print( mySwitch.getReceivedValue() );
Serial.print(" / ");
Serial.print( mySwitch.getReceivedBitlength() );
Serial.print("bit ");
Serial.print("Protocol: ");
Serial.println( mySwitch.getReceivedProtocol() );
}
mySwitch.resetAvailable();
}
}

View File

@@ -0,0 +1,57 @@
/*
Example for different sending methods
http://code.google.com/p/rc-switch/
*/
#include <RCSwitch.h>
RCSwitch mySwitch = RCSwitch();
void setup() {
Serial.begin(9600);
// Transmitter is connected to Arduino Pin #10
mySwitch.enableTransmit(10);
// Optional set pulse length.
// mySwitch.setPulseLength(320);
// Optional set protocol (default is 1, will work for most outlets)
// mySwitch.setProtocol(2);
// Optional set number of transmission repetitions.
// mySwitch.setRepeatTransmit(15);
}
void loop() {
/* See Example: TypeA_WithDIPSwitches */
mySwitch.switchOn("11111", "00010");
delay(1000);
mySwitch.switchOn("11111", "00010");
delay(1000);
/* Same switch as above, but using decimal code */
mySwitch.send(5393, 24);
delay(1000);
mySwitch.send(5396, 24);
delay(1000);
/* Same switch as above, but using binary code */
mySwitch.send("000000000001010100010001");
delay(1000);
mySwitch.send("000000000001010100010100");
delay(1000);
/* Same switch as above, but tri-state code */
mySwitch.sendTriState("00000FFF0F0F");
delay(1000);
mySwitch.sendTriState("00000FFF0FF0");
delay(1000);
delay(20000);
}

View File

@@ -0,0 +1,40 @@
/*
Example for outlets which are configured with a 10 pole DIP switch.
http://code.google.com/p/rc-switch/
*/
#include <RCSwitch.h>
RCSwitch mySwitch = RCSwitch();
void setup() {
// Transmitter is connected to Arduino Pin #10
mySwitch.enableTransmit(10);
// Optional set pulse length.
// mySwitch.setPulseLength(320);
}
void loop() {
// Switch on:
// The first parameter represents the setting of the first 5 DIP switches.
// In this example it's ON-ON-OFF-OFF-ON.
//
// The second parameter represents the setting of the last 5 DIP switches.
// In this example the last 5 DIP switches are OFF-ON-OFF-ON-OFF.
mySwitch.switchOn("11001", "01010");
// Wait a second
delay(1000);
// Switch off
mySwitch.switchOff("11001", "01010");
// Wait another second
delay(1000);
}

View File

@@ -0,0 +1,43 @@
/*
This is a minimal sketch without using the library at all but only works for
the 10 pole dip switch sockets. It saves a lot of memory and thus might be
very useful to use with ATTinys :)
http://code.google.com/p/rc-switch/
*/
int RCLpin = 7;
void setup() {
pinMode(RCLpin, OUTPUT);
}
void loop() {
RCLswitch(0b010001000001); // DIPs an Steckdose: 0100010000 An:01
delay(2000);
RCLswitch(0b010001000010); // DIPs an Steckdose: 0100010000 Aus:10
delay(2000);
}
void RCLswitch(uint16_t code) {
for (int nRepeat=0; nRepeat<6; nRepeat++) {
for (int i=4; i<16; i++) {
RCLtransmit(1,3);
if (((code << (i-4)) & 2048) > 0) {
RCLtransmit(1,3);
} else {
RCLtransmit(3,1);
}
}
RCLtransmit(1,31);
}
}
void RCLtransmit(int nHighPulses, int nLowPulses) {
digitalWrite(RCLpin, HIGH);
delayMicroseconds( 350 * nHighPulses);
digitalWrite(RCLpin, LOW);
delayMicroseconds( 350 * nLowPulses);
}

View File

@@ -0,0 +1,40 @@
/*
Example for outlets which are configured with two rotary/sliding switches.
http://code.google.com/p/rc-switch/
*/
#include <RCSwitch.h>
RCSwitch mySwitch = RCSwitch();
void setup() {
// Transmitter is connected to Arduino Pin #10
mySwitch.enableTransmit(10);
// Optional set pulse length.
// mySwitch.setPulseLength(320);
}
void loop() {
// Switch on:
// The first parameter represents the setting of the first rotary switch.
// In this example it's switched to "1" or "A" or "I".
//
// The second parameter represents the setting of the second rotary switch.
// In this example it's switched to "4" or "D" or "IV".
mySwitch.switchOn(1, 4);
// Wait a second
delay(1000);
// Switch off
mySwitch.switchOff(1, 4);
// Wait another second
delay(1000);
}

View File

@@ -0,0 +1,40 @@
/*
Example for Intertechno outlets
http://code.google.com/p/rc-switch/
*/
#include <RCSwitch.h>
RCSwitch mySwitch = RCSwitch();
void setup() {
// Transmitter is connected to Arduino Pin #10
mySwitch.enableTransmit(10);
// Optional set pulse length.
// mySwitch.setPulseLength(320);
}
void loop() {
// Switch on:
// The first parameter represents the familycode (a, b, c, ... f)
// The second parameter represents the group number
// The third parameter represents the device number
//
// In this example it's family 'b', group #3, device #2
mySwitch.switchOn('b', 3, 2);
// Wait a second
delay(1000);
// Switch off
mySwitch.switchOff('b', 3, 2);
// Wait another second
delay(1000);
}

View File

@@ -0,0 +1,41 @@
/*
Example for REV outlets (e.g. 8342L)
http://code.google.com/p/rc-switch/
Need help? http://forum.ardumote.com
*/
#include <RCSwitch.h>
RCSwitch mySwitch = RCSwitch();
void setup() {
// Transmitter is connected to Arduino Pin #10
mySwitch.enableTransmit(10);
// set pulse length.
mySwitch.setPulseLength(360);
}
void loop() {
// Switch on:
// The first parameter represents the channel (a, b, c, d)
// The second parameter represents the device number
//
// In this example it's family 'd', device #2
mySwitch.switchOn('d', 2);
// Wait a second
delay(1000);
// Switch off
mySwitch.switchOff('d', 2);
// Wait another second
delay(1000);
}

View File

@@ -0,0 +1,154 @@
/*
A simple RCSwitch/Ethernet/Webserver demo
http://code.google.com/p/rc-switch/
*/
#include <SPI.h>
#include <Ethernet.h>
#include <RCSwitch.h>
// Ethernet configuration
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED }; // MAC Address
byte ip[] = { 192,168,0, 2 }; // IP Address
EthernetServer server(80); // Server Port 80
// RCSwitch configuration
RCSwitch mySwitch = RCSwitch();
int RCTransmissionPin = 7;
// More to do...
// You should also modify the processCommand() and
// httpResponseHome() functions to fit your needs.
/**
* Setup
*/
void setup() {
Ethernet.begin(mac, ip);
server.begin();
mySwitch.enableTransmit( RCTransmissionPin );
}
/**
* Loop
*/
void loop() {
char* command = httpServer();
}
/**
* Command dispatcher
*/
void processCommand(char* command) {
if (strcmp(command, "1-on") == 0) {
mySwitch.switchOn(1,1);
} else if (strcmp(command, "1-off") == 0) {
mySwitch.switchOff(1,1);
} else if (strcmp(command, "2-on") == 0) {
mySwitch.switchOn(1,2);
} else if (strcmp(command, "2-off") == 0) {
mySwitch.switchOff(1,2);
}
}
/**
* HTTP Response with homepage
*/
void httpResponseHome(EthernetClient c) {
c.println("HTTP/1.1 200 OK");
c.println("Content-Type: text/html");
c.println();
c.println("<html>");
c.println("<head>");
c.println( "<title>RCSwitch Webserver Demo</title>");
c.println( "<style>");
c.println( "body { font-family: Arial, sans-serif; font-size:12px; }");
c.println( "</style>");
c.println("</head>");
c.println("<body>");
c.println( "<h1>RCSwitch Webserver Demo</h1>");
c.println( "<ul>");
c.println( "<li><a href=\"./?1-on\">Switch #1 on</a></li>");
c.println( "<li><a href=\"./?1-off\">Switch #1 off</a></li>");
c.println( "</ul>");
c.println( "<ul>");
c.println( "<li><a href=\"./?2-on\">Switch #2 on</a></li>");
c.println( "<li><a href=\"./?2-off\">Switch #2 off</a></li>");
c.println( "</ul>");
c.println( "<hr>");
c.println( "<a href=\"http://code.google.com/p/rc-switch/\">http://code.google.com/p/rc-switch/</a>");
c.println("</body>");
c.println("</html>");
}
/**
* HTTP Redirect to homepage
*/
void httpResponseRedirect(EthernetClient c) {
c.println("HTTP/1.1 301 Found");
c.println("Location: /");
c.println();
}
/**
* HTTP Response 414 error
* Command must not be longer than 30 characters
**/
void httpResponse414(EthernetClient c) {
c.println("HTTP/1.1 414 Request URI too long");
c.println("Content-Type: text/plain");
c.println();
c.println("414 Request URI too long");
}
/**
* Process HTTP requests, parse first request header line and
* call processCommand with GET query string (everything after
* the ? question mark in the URL).
*/
char* httpServer() {
EthernetClient client = server.available();
if (client) {
char sReturnCommand[32];
int nCommandPos=-1;
sReturnCommand[0] = '\0';
while (client.connected()) {
if (client.available()) {
char c = client.read();
if ((c == '\n') || (c == ' ' && nCommandPos>-1)) {
sReturnCommand[nCommandPos] = '\0';
if (strcmp(sReturnCommand, "\0") == 0) {
httpResponseHome(client);
} else {
processCommand(sReturnCommand);
httpResponseRedirect(client);
}
break;
}
if (nCommandPos>-1) {
sReturnCommand[nCommandPos++] = c;
}
if (c == '?' && nCommandPos == -1) {
nCommandPos = 0;
}
}
if (nCommandPos > 30) {
httpResponse414(client);
sReturnCommand[0] = '\0';
break;
}
}
if (nCommandPos!=-1) {
sReturnCommand[nCommandPos] = '\0';
}
// give the web browser time to receive the data
delay(1);
client.stop();
return sReturnCommand;
}
return '\0';
}

57
lib/RCSwitch/keywords.txt Normal file
View File

@@ -0,0 +1,57 @@
#######################################
# Syntax Coloring Map For RCSwitch
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
RCSwitch KEYWORD1
#######################################
# Methods and Functions (KEYWORD2)
#######################################
##########
#SENDS Begin
##########
switchOn KEYWORD2
switchOff KEYWORD2
sendTriState KEYWORD2
send KEYWORD2
##########
#SENDS End
##########
##########
#RECEIVE Begin
##########
enableReceive KEYWORD2
disableReceive KEYWORD2
available KEYWORD2
resetAvailable KEYWORD2
setReceiveTolerance KEYWORD2
getReceivedValue KEYWORD2
getReceivedBitlength KEYWORD2
getReceivedDelay KEYWORD2
getReceivedProtocol KEYWORD2
getReceivedRawdata KEYWORD2
##########
#RECEIVE End
##########
##########
#OTHERS Begin
##########
enableTransmit KEYWORD2
disableTransmit KEYWORD2
setPulseLength KEYWORD2
setProtocol KEYWORD2
setRepeatTransmit KEYWORD2
##########
#OTHERS End
##########
#######################################
# Constants (LITERAL1)
#######################################