rg/vaja_1/glm.js
2024-11-22 18:15:18 +01:00

6007 lines
162 KiB
JavaScript

var u = 'zyx',
we = Math.PI / 180,
pe = 180 / Math.PI;
var _ = new Float32Array([1, 0, 0, 1]),
j = class h extends Float32Array {
static BYTE_LENGTH = 4 * Float32Array.BYTES_PER_ELEMENT;
constructor(...e) {
switch (e.length) {
case 4:
super(e);
break;
case 2:
super(e[0], e[1], 4);
break;
case 1:
let t = e[0];
typeof t == 'number' ? super([t, t, t, t]) : super(t, 0, 4);
break;
default:
super(_);
break;
}
}
get str() {
return h.str(this);
}
copy(e) {
return this.set(e), this;
}
identity() {
return this.set(_), this;
}
multiply(e) {
return h.multiply(this, this, e);
}
mul(e) {
return this;
}
transpose() {
return h.transpose(this, this);
}
invert() {
return h.invert(this, this);
}
scale(e) {
return h.scale(this, this, e);
}
rotate(e) {
return h.rotate(this, this, e);
}
static create() {
return new h();
}
static clone(e) {
return new h(e);
}
static copy(e, t) {
return (
(e[0] = t[0]), (e[1] = t[1]), (e[2] = t[2]), (e[3] = t[3]), e
);
}
static fromValues(...e) {
return new h(...e);
}
static set(e, ...t) {
return (
(e[0] = t[0]), (e[1] = t[1]), (e[2] = t[2]), (e[3] = t[3]), e
);
}
static identity(e) {
return (e[0] = 1), (e[1] = 0), (e[2] = 0), (e[3] = 1), e;
}
static transpose(e, t) {
if (e === t) {
let n = t[1];
(e[1] = t[2]), (e[2] = n);
} else (e[0] = t[0]), (e[1] = t[2]), (e[2] = t[1]), (e[3] = t[3]);
return e;
}
static invert(e, t) {
let n = t[0],
r = t[1],
a = t[2],
s = t[3],
i = n * s - a * r;
return i
? ((i = 1 / i),
(e[0] = s * i),
(e[1] = -r * i),
(e[2] = -a * i),
(e[3] = n * i),
e)
: null;
}
static adjoint(e, t) {
let n = t[0];
return (e[0] = t[3]), (e[1] = -t[1]), (e[2] = -t[2]), (e[3] = n), e;
}
static determinant(e) {
return e[0] * e[3] - e[2] * e[1];
}
static add(e, t, n) {
return (
(e[0] = t[0] + n[0]),
(e[1] = t[1] + n[1]),
(e[2] = t[2] + n[2]),
(e[3] = t[3] + n[3]),
e
);
}
static subtract(e, t, n) {
return (
(e[0] = t[0] - n[0]),
(e[1] = t[1] - n[1]),
(e[2] = t[2] - n[2]),
(e[3] = t[3] - n[3]),
e
);
}
static sub(e, t, n) {
return e;
}
static multiply(e, t, n) {
let r = t[0],
a = t[1],
s = t[2],
i = t[3],
c = n[0],
y = n[1],
L = n[2],
k = n[3];
return (
(e[0] = r * c + s * y),
(e[1] = a * c + i * y),
(e[2] = r * L + s * k),
(e[3] = a * L + i * k),
e
);
}
static mul(e, t, n) {
return e;
}
static rotate(e, t, n) {
let r = t[0],
a = t[1],
s = t[2],
i = t[3],
c = Math.sin(n),
y = Math.cos(n);
return (
(e[0] = r * y + s * c),
(e[1] = a * y + i * c),
(e[2] = r * -c + s * y),
(e[3] = a * -c + i * y),
e
);
}
static scale(e, t, n) {
let r = t[0],
a = t[1],
s = t[2],
i = t[3],
c = n[0],
y = n[1];
return (
(e[0] = r * c),
(e[1] = a * c),
(e[2] = s * y),
(e[3] = i * y),
e
);
}
static fromRotation(e, t) {
let n = Math.sin(t),
r = Math.cos(t);
return (e[0] = r), (e[1] = n), (e[2] = -n), (e[3] = r), e;
}
static fromScaling(e, t) {
return (e[0] = t[0]), (e[1] = 0), (e[2] = 0), (e[3] = t[1]), e;
}
static frob(e) {
return Math.sqrt(
e[0] * e[0] + e[1] * e[1] + e[2] * e[2] + e[3] * e[3],
);
}
static multiplyScalar(e, t, n) {
return (
(e[0] = t[0] * n),
(e[1] = t[1] * n),
(e[2] = t[2] * n),
(e[3] = t[3] * n),
e
);
}
static multiplyScalarAndAdd(e, t, n, r) {
return (
(e[0] = t[0] + n[0] * r),
(e[1] = t[1] + n[1] * r),
(e[2] = t[2] + n[2] * r),
(e[3] = t[3] + n[3] * r),
e
);
}
static LDU(e, t, n, r) {
return (
(e[2] = r[2] / r[0]),
(n[0] = r[0]),
(n[1] = r[1]),
(n[3] = r[3] - e[2] * n[1]),
[e, t, n]
);
}
static exactEquals(e, t) {
return (
e[0] === t[0] && e[1] === t[1] && e[2] === t[2] && e[3] === t[3]
);
}
static equals(e, t) {
let n = e[0],
r = e[1],
a = e[2],
s = e[3],
i = t[0],
c = t[1],
y = t[2],
L = t[3];
return (
Math.abs(n - i) <=
1e-6 * Math.max(1, Math.abs(n), Math.abs(i)) &&
Math.abs(r - c) <=
1e-6 * Math.max(1, Math.abs(r), Math.abs(c)) &&
Math.abs(a - y) <=
1e-6 * Math.max(1, Math.abs(a), Math.abs(y)) &&
Math.abs(s - L) <= 1e-6 * Math.max(1, Math.abs(s), Math.abs(L))
);
}
static str(e) {
return `Mat2(${e.join(', ')})`;
}
};
j.prototype.mul = j.prototype.multiply;
j.mul = j.multiply;
j.sub = j.subtract;
var ye = j;
var ee = new Float32Array([1, 0, 0, 1, 0, 0]),
C = class h extends Float32Array {
static BYTE_LENGTH = 6 * Float32Array.BYTES_PER_ELEMENT;
constructor(...e) {
switch (e.length) {
case 6:
super(e);
break;
case 2:
super(e[0], e[1], 6);
break;
case 1:
let t = e[0];
typeof t == 'number'
? super([t, t, t, t, t, t])
: super(t, 0, 6);
break;
default:
super(ee);
break;
}
}
get str() {
return h.str(this);
}
copy(e) {
return this.set(e), this;
}
identity() {
return this.set(ee), this;
}
multiply(e) {
return h.multiply(this, this, e);
}
mul(e) {
return this;
}
translate(e) {
return h.translate(this, this, e);
}
rotate(e) {
return h.rotate(this, this, e);
}
scale(e) {
return h.scale(this, this, e);
}
static create() {
return new h();
}
static clone(e) {
return new h(e);
}
static copy(e, t) {
return (
(e[0] = t[0]),
(e[1] = t[1]),
(e[2] = t[2]),
(e[3] = t[3]),
(e[4] = t[4]),
(e[5] = t[5]),
e
);
}
static fromValues(...e) {
return new h(...e);
}
static set(e, ...t) {
return (
(e[0] = t[0]),
(e[1] = t[1]),
(e[2] = t[2]),
(e[3] = t[3]),
(e[4] = t[4]),
(e[5] = t[5]),
e
);
}
static identity(e) {
return (
(e[0] = 1),
(e[1] = 0),
(e[2] = 0),
(e[3] = 1),
(e[4] = 0),
(e[5] = 0),
e
);
}
static invert(e, t) {
let n = t[0],
r = t[1],
a = t[2],
s = t[3],
i = t[4],
c = t[5],
y = n * s - r * a;
return y
? ((y = 1 / y),
(e[0] = s * y),
(e[1] = -r * y),
(e[2] = -a * y),
(e[3] = n * y),
(e[4] = (a * c - s * i) * y),
(e[5] = (r * i - n * c) * y),
e)
: null;
}
static determinant(e) {
return e[0] * e[3] - e[1] * e[2];
}
static add(e, t, n) {
return (
(e[0] = t[0] + n[0]),
(e[1] = t[1] + n[1]),
(e[2] = t[2] + n[2]),
(e[3] = t[3] + n[3]),
(e[4] = t[4] + n[4]),
(e[5] = t[5] + n[5]),
e
);
}
static subtract(e, t, n) {
return (
(e[0] = t[0] - n[0]),
(e[1] = t[1] - n[1]),
(e[2] = t[2] - n[2]),
(e[3] = t[3] - n[3]),
(e[4] = t[4] - n[4]),
(e[5] = t[5] - n[5]),
e
);
}
static sub(e, t, n) {
return e;
}
static multiply(e, t, n) {
let r = t[0],
a = t[1],
s = t[2],
i = t[3],
c = t[4],
y = t[5],
L = n[0],
k = n[1],
l = n[2],
b = n[3],
M = n[4],
d = n[5];
return (
(e[0] = r * L + s * k),
(e[1] = a * L + i * k),
(e[2] = r * l + s * b),
(e[3] = a * l + i * b),
(e[4] = r * M + s * d + c),
(e[5] = a * M + i * d + y),
e
);
}
static mul(e, t, n) {
return e;
}
static translate(e, t, n) {
let r = t[0],
a = t[1],
s = t[2],
i = t[3],
c = t[4],
y = t[5],
L = n[0],
k = n[1];
return (
(e[0] = r),
(e[1] = a),
(e[2] = s),
(e[3] = i),
(e[4] = r * L + s * k + c),
(e[5] = a * L + i * k + y),
e
);
}
static rotate(e, t, n) {
let r = t[0],
a = t[1],
s = t[2],
i = t[3],
c = t[4],
y = t[5],
L = Math.sin(n),
k = Math.cos(n);
return (
(e[0] = r * k + s * L),
(e[1] = a * k + i * L),
(e[2] = r * -L + s * k),
(e[3] = a * -L + i * k),
(e[4] = c),
(e[5] = y),
e
);
}
static scale(e, t, n) {
let r = t[0],
a = t[1],
s = t[2],
i = t[3],
c = t[4],
y = t[5],
L = n[0],
k = n[1];
return (
(e[0] = r * L),
(e[1] = a * L),
(e[2] = s * k),
(e[3] = i * k),
(e[4] = c),
(e[5] = y),
e
);
}
static fromTranslation(e, t) {
return (
(e[0] = 1),
(e[1] = 0),
(e[2] = 0),
(e[3] = 1),
(e[4] = t[0]),
(e[5] = t[1]),
e
);
}
static fromRotation(e, t) {
let n = Math.sin(t),
r = Math.cos(t);
return (
(e[0] = r),
(e[1] = n),
(e[2] = -n),
(e[3] = r),
(e[4] = 0),
(e[5] = 0),
e
);
}
static fromScaling(e, t) {
return (
(e[0] = t[0]),
(e[1] = 0),
(e[2] = 0),
(e[3] = t[1]),
(e[4] = 0),
(e[5] = 0),
e
);
}
static frob(e) {
return Math.sqrt(
e[0] * e[0] +
e[1] * e[1] +
e[2] * e[2] +
e[3] * e[3] +
e[4] * e[4] +
e[5] * e[5] +
1,
);
}
static multiplyScalar(e, t, n) {
return (
(e[0] = t[0] * n),
(e[1] = t[1] * n),
(e[2] = t[2] * n),
(e[3] = t[3] * n),
(e[4] = t[4] * n),
(e[5] = t[5] * n),
e
);
}
static multiplyScalarAndAdd(e, t, n, r) {
return (
(e[0] = t[0] + n[0] * r),
(e[1] = t[1] + n[1] * r),
(e[2] = t[2] + n[2] * r),
(e[3] = t[3] + n[3] * r),
(e[4] = t[4] + n[4] * r),
(e[5] = t[5] + n[5] * r),
e
);
}
static exactEquals(e, t) {
return (
e[0] === t[0] &&
e[1] === t[1] &&
e[2] === t[2] &&
e[3] === t[3] &&
e[4] === t[4] &&
e[5] === t[5]
);
}
static equals(e, t) {
let n = e[0],
r = e[1],
a = e[2],
s = e[3],
i = e[4],
c = e[5],
y = t[0],
L = t[1],
k = t[2],
l = t[3],
b = t[4],
M = t[5];
return (
Math.abs(n - y) <=
1e-6 * Math.max(1, Math.abs(n), Math.abs(y)) &&
Math.abs(r - L) <=
1e-6 * Math.max(1, Math.abs(r), Math.abs(L)) &&
Math.abs(a - k) <=
1e-6 * Math.max(1, Math.abs(a), Math.abs(k)) &&
Math.abs(s - l) <=
1e-6 * Math.max(1, Math.abs(s), Math.abs(l)) &&
Math.abs(i - b) <=
1e-6 * Math.max(1, Math.abs(i), Math.abs(b)) &&
Math.abs(c - M) <= 1e-6 * Math.max(1, Math.abs(c), Math.abs(M))
);
}
static str(e) {
return `Mat2d(${e.join(', ')})`;
}
};
C.mul = C.multiply;
C.sub = C.subtract;
var Le = C;
var te = new Float32Array([1, 0, 0, 0, 1, 0, 0, 0, 1]),
X = class h extends Float32Array {
static BYTE_LENGTH = 9 * Float32Array.BYTES_PER_ELEMENT;
constructor(...e) {
switch (e.length) {
case 9:
super(e);
break;
case 2:
super(e[0], e[1], 9);
break;
case 1:
let t = e[0];
typeof t == 'number'
? super([t, t, t, t, t, t, t, t, t])
: super(t, 0, 9);
break;
default:
super(te);
break;
}
}
get str() {
return h.str(this);
}
copy(e) {
return this.set(e), this;
}
identity() {
return this.set(te), this;
}
multiply(e) {
return h.multiply(this, this, e);
}
mul(e) {
return this;
}
transpose() {
return h.transpose(this, this);
}
invert() {
return h.invert(this, this);
}
translate(e) {
return h.translate(this, this, e);
}
rotate(e) {
return h.rotate(this, this, e);
}
scale(e) {
return h.scale(this, this, e);
}
static create() {
return new h();
}
static clone(e) {
return new h(e);
}
static copy(e, t) {
return (
(e[0] = t[0]),
(e[1] = t[1]),
(e[2] = t[2]),
(e[3] = t[3]),
(e[4] = t[4]),
(e[5] = t[5]),
(e[6] = t[6]),
(e[7] = t[7]),
(e[8] = t[8]),
e
);
}
static fromValues(...e) {
return new h(...e);
}
static set(e, ...t) {
return (
(e[0] = t[0]),
(e[1] = t[1]),
(e[2] = t[2]),
(e[3] = t[3]),
(e[4] = t[4]),
(e[5] = t[5]),
(e[6] = t[6]),
(e[7] = t[7]),
(e[8] = t[8]),
e
);
}
static identity(e) {
return (
(e[0] = 1),
(e[1] = 0),
(e[2] = 0),
(e[3] = 0),
(e[4] = 1),
(e[5] = 0),
(e[6] = 0),
(e[7] = 0),
(e[8] = 1),
e
);
}
static transpose(e, t) {
if (e === t) {
let n = t[1],
r = t[2],
a = t[5];
(e[1] = t[3]),
(e[2] = t[6]),
(e[3] = n),
(e[5] = t[7]),
(e[6] = r),
(e[7] = a);
} else
(e[0] = t[0]),
(e[1] = t[3]),
(e[2] = t[6]),
(e[3] = t[1]),
(e[4] = t[4]),
(e[5] = t[7]),
(e[6] = t[2]),
(e[7] = t[5]),
(e[8] = t[8]);
return e;
}
static invert(e, t) {
let n = t[0],
r = t[1],
a = t[2],
s = t[3],
i = t[4],
c = t[5],
y = t[6],
L = t[7],
k = t[8],
l = k * i - c * L,
b = -k * s + c * y,
M = L * s - i * y,
d = n * l + r * b + a * M;
return d
? ((d = 1 / d),
(e[0] = l * d),
(e[1] = (-k * r + a * L) * d),
(e[2] = (c * r - a * i) * d),
(e[3] = b * d),
(e[4] = (k * n - a * y) * d),
(e[5] = (-c * n + a * s) * d),
(e[6] = M * d),
(e[7] = (-L * n + r * y) * d),
(e[8] = (i * n - r * s) * d),
e)
: null;
}
static adjoint(e, t) {
let n = t[0],
r = t[1],
a = t[2],
s = t[3],
i = t[4],
c = t[5],
y = t[6],
L = t[7],
k = t[8];
return (
(e[0] = i * k - c * L),
(e[1] = a * L - r * k),
(e[2] = r * c - a * i),
(e[3] = c * y - s * k),
(e[4] = n * k - a * y),
(e[5] = a * s - n * c),
(e[6] = s * L - i * y),
(e[7] = r * y - n * L),
(e[8] = n * i - r * s),
e
);
}
static determinant(e) {
let t = e[0],
n = e[1],
r = e[2],
a = e[3],
s = e[4],
i = e[5],
c = e[6],
y = e[7],
L = e[8];
return (
t * (L * s - i * y) + n * (-L * a + i * c) + r * (y * a - s * c)
);
}
static add(e, t, n) {
return (
(e[0] = t[0] + n[0]),
(e[1] = t[1] + n[1]),
(e[2] = t[2] + n[2]),
(e[3] = t[3] + n[3]),
(e[4] = t[4] + n[4]),
(e[5] = t[5] + n[5]),
(e[6] = t[6] + n[6]),
(e[7] = t[7] + n[7]),
(e[8] = t[8] + n[8]),
e
);
}
static subtract(e, t, n) {
return (
(e[0] = t[0] - n[0]),
(e[1] = t[1] - n[1]),
(e[2] = t[2] - n[2]),
(e[3] = t[3] - n[3]),
(e[4] = t[4] - n[4]),
(e[5] = t[5] - n[5]),
(e[6] = t[6] - n[6]),
(e[7] = t[7] - n[7]),
(e[8] = t[8] - n[8]),
e
);
}
static sub(e, t, n) {
return e;
}
static multiply(e, t, n) {
let r = t[0],
a = t[1],
s = t[2],
i = t[3],
c = t[4],
y = t[5],
L = t[6],
k = t[7],
l = t[8],
b = n[0],
M = n[1],
d = n[2];
return (
(e[0] = b * r + M * i + d * L),
(e[1] = b * a + M * c + d * k),
(e[2] = b * s + M * y + d * l),
(b = n[3]),
(M = n[4]),
(d = n[5]),
(e[3] = b * r + M * i + d * L),
(e[4] = b * a + M * c + d * k),
(e[5] = b * s + M * y + d * l),
(b = n[6]),
(M = n[7]),
(d = n[8]),
(e[6] = b * r + M * i + d * L),
(e[7] = b * a + M * c + d * k),
(e[8] = b * s + M * y + d * l),
e
);
}
static mul(e, t, n) {
return e;
}
static translate(e, t, n) {
let r = t[0],
a = t[1],
s = t[2],
i = t[3],
c = t[4],
y = t[5],
L = t[6],
k = t[7],
l = t[8],
b = n[0],
M = n[1];
return (
(e[0] = r),
(e[1] = a),
(e[2] = s),
(e[3] = i),
(e[4] = c),
(e[5] = y),
(e[6] = b * r + M * i + L),
(e[7] = b * a + M * c + k),
(e[8] = b * s + M * y + l),
e
);
}
static rotate(e, t, n) {
let r = t[0],
a = t[1],
s = t[2],
i = t[3],
c = t[4],
y = t[5],
L = t[6],
k = t[7],
l = t[8],
b = Math.sin(n),
M = Math.cos(n);
return (
(e[0] = M * r + b * i),
(e[1] = M * a + b * c),
(e[2] = M * s + b * y),
(e[3] = M * i - b * r),
(e[4] = M * c - b * a),
(e[5] = M * y - b * s),
(e[6] = L),
(e[7] = k),
(e[8] = l),
e
);
}
static scale(e, t, n) {
let r = n[0],
a = n[1];
return (
(e[0] = r * t[0]),
(e[1] = r * t[1]),
(e[2] = r * t[2]),
(e[3] = a * t[3]),
(e[4] = a * t[4]),
(e[5] = a * t[5]),
(e[6] = t[6]),
(e[7] = t[7]),
(e[8] = t[8]),
e
);
}
static fromTranslation(e, t) {
return (
(e[0] = 1),
(e[1] = 0),
(e[2] = 0),
(e[3] = 0),
(e[4] = 1),
(e[5] = 0),
(e[6] = t[0]),
(e[7] = t[1]),
(e[8] = 1),
e
);
}
static fromRotation(e, t) {
let n = Math.sin(t),
r = Math.cos(t);
return (
(e[0] = r),
(e[1] = n),
(e[2] = 0),
(e[3] = -n),
(e[4] = r),
(e[5] = 0),
(e[6] = 0),
(e[7] = 0),
(e[8] = 1),
e
);
}
static fromScaling(e, t) {
return (
(e[0] = t[0]),
(e[1] = 0),
(e[2] = 0),
(e[3] = 0),
(e[4] = t[1]),
(e[5] = 0),
(e[6] = 0),
(e[7] = 0),
(e[8] = 1),
e
);
}
static fromMat2d(e, t) {
return (
(e[0] = t[0]),
(e[1] = t[1]),
(e[2] = 0),
(e[3] = t[2]),
(e[4] = t[3]),
(e[5] = 0),
(e[6] = t[4]),
(e[7] = t[5]),
(e[8] = 1),
e
);
}
static fromQuat(e, t) {
let n = t[0],
r = t[1],
a = t[2],
s = t[3],
i = n + n,
c = r + r,
y = a + a,
L = n * i,
k = r * i,
l = r * c,
b = a * i,
M = a * c,
d = a * y,
m = s * i,
o = s * c,
x = s * y;
return (
(e[0] = 1 - l - d),
(e[3] = k - x),
(e[6] = b + o),
(e[1] = k + x),
(e[4] = 1 - L - d),
(e[7] = M - m),
(e[2] = b - o),
(e[5] = M + m),
(e[8] = 1 - L - l),
e
);
}
static fromMat4(e, t) {
return (
(e[0] = t[0]),
(e[1] = t[1]),
(e[2] = t[2]),
(e[3] = t[4]),
(e[4] = t[5]),
(e[5] = t[6]),
(e[6] = t[8]),
(e[7] = t[9]),
(e[8] = t[10]),
e
);
}
static normalFromMat4(e, t) {
let n = t[0],
r = t[1],
a = t[2],
s = t[3],
i = t[4],
c = t[5],
y = t[6],
L = t[7],
k = t[8],
l = t[9],
b = t[10],
M = t[11],
d = t[12],
m = t[13],
o = t[14],
x = t[15],
z = n * c - r * i,
R = n * y - a * i,
V = n * L - s * i,
w = r * y - a * c,
g = r * L - s * c,
T = a * L - s * y,
E = k * m - l * d,
F = k * o - b * d,
f = k * x - M * d,
N = l * o - b * m,
B = l * x - M * m,
D = b * x - M * o,
Q = z * D - R * B + V * N + w * f - g * F + T * E;
return Q
? ((Q = 1 / Q),
(e[0] = (c * D - y * B + L * N) * Q),
(e[1] = (y * f - i * D - L * F) * Q),
(e[2] = (i * B - c * f + L * E) * Q),
(e[3] = (a * B - r * D - s * N) * Q),
(e[4] = (n * D - a * f + s * F) * Q),
(e[5] = (r * f - n * B - s * E) * Q),
(e[6] = (m * T - o * g + x * w) * Q),
(e[7] = (o * V - d * T - x * R) * Q),
(e[8] = (d * g - m * V + x * z) * Q),
e)
: null;
}
static normalFromMat4Fast(e, t) {
let n = t[0],
r = t[1],
a = t[2],
s = t[4],
i = t[5],
c = t[6],
y = t[8],
L = t[9],
k = t[10];
return (
(e[0] = i * k - k * L),
(e[1] = c * y - y * k),
(e[2] = s * L - L * y),
(e[3] = L * a - k * r),
(e[4] = k * n - y * a),
(e[5] = y * r - L * n),
(e[6] = r * c - a * i),
(e[7] = a * s - n * c),
(e[8] = n * i - r * s),
e
);
}
static projection(e, t, n) {
return (
(e[0] = 2 / t),
(e[1] = 0),
(e[2] = 0),
(e[3] = 0),
(e[4] = -2 / n),
(e[5] = 0),
(e[6] = -1),
(e[7] = 1),
(e[8] = 1),
e
);
}
static frob(e) {
return Math.sqrt(
e[0] * e[0] +
e[1] * e[1] +
e[2] * e[2] +
e[3] * e[3] +
e[4] * e[4] +
e[5] * e[5] +
e[6] * e[6] +
e[7] * e[7] +
e[8] * e[8],
);
}
static multiplyScalar(e, t, n) {
return (
(e[0] = t[0] * n),
(e[1] = t[1] * n),
(e[2] = t[2] * n),
(e[3] = t[3] * n),
(e[4] = t[4] * n),
(e[5] = t[5] * n),
(e[6] = t[6] * n),
(e[7] = t[7] * n),
(e[8] = t[8] * n),
e
);
}
static multiplyScalarAndAdd(e, t, n, r) {
return (
(e[0] = t[0] + n[0] * r),
(e[1] = t[1] + n[1] * r),
(e[2] = t[2] + n[2] * r),
(e[3] = t[3] + n[3] * r),
(e[4] = t[4] + n[4] * r),
(e[5] = t[5] + n[5] * r),
(e[6] = t[6] + n[6] * r),
(e[7] = t[7] + n[7] * r),
(e[8] = t[8] + n[8] * r),
e
);
}
static exactEquals(e, t) {
return (
e[0] === t[0] &&
e[1] === t[1] &&
e[2] === t[2] &&
e[3] === t[3] &&
e[4] === t[4] &&
e[5] === t[5] &&
e[6] === t[6] &&
e[7] === t[7] &&
e[8] === t[8]
);
}
static equals(e, t) {
let n = e[0],
r = e[1],
a = e[2],
s = e[3],
i = e[4],
c = e[5],
y = e[6],
L = e[7],
k = e[8],
l = t[0],
b = t[1],
M = t[2],
d = t[3],
m = t[4],
o = t[5],
x = t[6],
z = t[7],
R = t[8];
return (
Math.abs(n - l) <=
1e-6 * Math.max(1, Math.abs(n), Math.abs(l)) &&
Math.abs(r - b) <=
1e-6 * Math.max(1, Math.abs(r), Math.abs(b)) &&
Math.abs(a - M) <=
1e-6 * Math.max(1, Math.abs(a), Math.abs(M)) &&
Math.abs(s - d) <=
1e-6 * Math.max(1, Math.abs(s), Math.abs(d)) &&
Math.abs(i - m) <=
1e-6 * Math.max(1, Math.abs(i), Math.abs(m)) &&
Math.abs(c - o) <=
1e-6 * Math.max(1, Math.abs(c), Math.abs(o)) &&
Math.abs(y - x) <=
1e-6 * Math.max(1, Math.abs(y), Math.abs(x)) &&
Math.abs(L - z) <=
1e-6 * Math.max(1, Math.abs(L), Math.abs(z)) &&
Math.abs(k - R) <= 1e-6 * Math.max(1, Math.abs(k), Math.abs(R))
);
}
static str(e) {
return `Mat3(${e.join(', ')})`;
}
};
X.prototype.mul = X.prototype.multiply;
X.mul = X.multiply;
X.sub = X.subtract;
var ke = X;
var ne = new Float32Array([1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]),
O = class h extends Float32Array {
static BYTE_LENGTH = 16 * Float32Array.BYTES_PER_ELEMENT;
constructor(...e) {
switch (e.length) {
case 16:
super(e);
break;
case 2:
super(e[0], e[1], 16);
break;
case 1:
let t = e[0];
typeof t == 'number'
? super([
t,
t,
t,
t,
t,
t,
t,
t,
t,
t,
t,
t,
t,
t,
t,
t,
])
: super(t, 0, 16);
break;
default:
super(ne);
break;
}
}
get str() {
return h.str(this);
}
copy(e) {
return this.set(e), this;
}
identity() {
return this.set(ne), this;
}
multiply(e) {
return h.multiply(this, this, e);
}
mul(e) {
return this;
}
transpose() {
return h.transpose(this, this);
}
invert() {
return h.invert(this, this);
}
translate(e) {
return h.translate(this, this, e);
}
rotate(e, t) {
return h.rotate(this, this, e, t);
}
scale(e) {
return h.scale(this, this, e);
}
rotateX(e) {
return h.rotateX(this, this, e);
}
rotateY(e) {
return h.rotateY(this, this, e);
}
rotateZ(e) {
return h.rotateZ(this, this, e);
}
perspectiveNO(e, t, n, r) {
return h.perspectiveNO(this, e, t, n, r);
}
perspectiveZO(e, t, n, r) {
return h.perspectiveZO(this, e, t, n, r);
}
orthoNO(e, t, n, r, a, s) {
return h.orthoNO(this, e, t, n, r, a, s);
}
orthoZO(e, t, n, r, a, s) {
return h.orthoZO(this, e, t, n, r, a, s);
}
static create() {
return new h();
}
static clone(e) {
return new h(e);
}
static copy(e, t) {
return (
(e[0] = t[0]),
(e[1] = t[1]),
(e[2] = t[2]),
(e[3] = t[3]),
(e[4] = t[4]),
(e[5] = t[5]),
(e[6] = t[6]),
(e[7] = t[7]),
(e[8] = t[8]),
(e[9] = t[9]),
(e[10] = t[10]),
(e[11] = t[11]),
(e[12] = t[12]),
(e[13] = t[13]),
(e[14] = t[14]),
(e[15] = t[15]),
e
);
}
static fromValues(...e) {
return new h(...e);
}
static set(e, ...t) {
return (
(e[0] = t[0]),
(e[1] = t[1]),
(e[2] = t[2]),
(e[3] = t[3]),
(e[4] = t[4]),
(e[5] = t[5]),
(e[6] = t[6]),
(e[7] = t[7]),
(e[8] = t[8]),
(e[9] = t[9]),
(e[10] = t[10]),
(e[11] = t[11]),
(e[12] = t[12]),
(e[13] = t[13]),
(e[14] = t[14]),
(e[15] = t[15]),
e
);
}
static identity(e) {
return (
(e[0] = 1),
(e[1] = 0),
(e[2] = 0),
(e[3] = 0),
(e[4] = 0),
(e[5] = 1),
(e[6] = 0),
(e[7] = 0),
(e[8] = 0),
(e[9] = 0),
(e[10] = 1),
(e[11] = 0),
(e[12] = 0),
(e[13] = 0),
(e[14] = 0),
(e[15] = 1),
e
);
}
static transpose(e, t) {
if (e === t) {
let n = t[1],
r = t[2],
a = t[3],
s = t[6],
i = t[7],
c = t[11];
(e[1] = t[4]),
(e[2] = t[8]),
(e[3] = t[12]),
(e[4] = n),
(e[6] = t[9]),
(e[7] = t[13]),
(e[8] = r),
(e[9] = s),
(e[11] = t[14]),
(e[12] = a),
(e[13] = i),
(e[14] = c);
} else
(e[0] = t[0]),
(e[1] = t[4]),
(e[2] = t[8]),
(e[3] = t[12]),
(e[4] = t[1]),
(e[5] = t[5]),
(e[6] = t[9]),
(e[7] = t[13]),
(e[8] = t[2]),
(e[9] = t[6]),
(e[10] = t[10]),
(e[11] = t[14]),
(e[12] = t[3]),
(e[13] = t[7]),
(e[14] = t[11]),
(e[15] = t[15]);
return e;
}
static invert(e, t) {
let n = t[0],
r = t[1],
a = t[2],
s = t[3],
i = t[4],
c = t[5],
y = t[6],
L = t[7],
k = t[8],
l = t[9],
b = t[10],
M = t[11],
d = t[12],
m = t[13],
o = t[14],
x = t[15],
z = n * c - r * i,
R = n * y - a * i,
V = n * L - s * i,
w = r * y - a * c,
g = r * L - s * c,
T = a * L - s * y,
E = k * m - l * d,
F = k * o - b * d,
f = k * x - M * d,
N = l * o - b * m,
B = l * x - M * m,
D = b * x - M * o,
Q = z * D - R * B + V * N + w * f - g * F + T * E;
return Q
? ((Q = 1 / Q),
(e[0] = (c * D - y * B + L * N) * Q),
(e[1] = (a * B - r * D - s * N) * Q),
(e[2] = (m * T - o * g + x * w) * Q),
(e[3] = (b * g - l * T - M * w) * Q),
(e[4] = (y * f - i * D - L * F) * Q),
(e[5] = (n * D - a * f + s * F) * Q),
(e[6] = (o * V - d * T - x * R) * Q),
(e[7] = (k * T - b * V + M * R) * Q),
(e[8] = (i * B - c * f + L * E) * Q),
(e[9] = (r * f - n * B - s * E) * Q),
(e[10] = (d * g - m * V + x * z) * Q),
(e[11] = (l * V - k * g - M * z) * Q),
(e[12] = (c * F - i * N - y * E) * Q),
(e[13] = (n * N - r * F + a * E) * Q),
(e[14] = (m * R - d * w - o * z) * Q),
(e[15] = (k * w - l * R + b * z) * Q),
e)
: null;
}
static adjoint(e, t) {
let n = t[0],
r = t[1],
a = t[2],
s = t[3],
i = t[4],
c = t[5],
y = t[6],
L = t[7],
k = t[8],
l = t[9],
b = t[10],
M = t[11],
d = t[12],
m = t[13],
o = t[14],
x = t[15],
z = n * c - r * i,
R = n * y - a * i,
V = n * L - s * i,
w = r * y - a * c,
g = r * L - s * c,
T = a * L - s * y,
E = k * m - l * d,
F = k * o - b * d,
f = k * x - M * d,
N = l * o - b * m,
B = l * x - M * m,
D = b * x - M * o;
return (
(e[0] = c * D - y * B + L * N),
(e[1] = a * B - r * D - s * N),
(e[2] = m * T - o * g + x * w),
(e[3] = b * g - l * T - M * w),
(e[4] = y * f - i * D - L * F),
(e[5] = n * D - a * f + s * F),
(e[6] = o * V - d * T - x * R),
(e[7] = k * T - b * V + M * R),
(e[8] = i * B - c * f + L * E),
(e[9] = r * f - n * B - s * E),
(e[10] = d * g - m * V + x * z),
(e[11] = l * V - k * g - M * z),
(e[12] = c * F - i * N - y * E),
(e[13] = n * N - r * F + a * E),
(e[14] = m * R - d * w - o * z),
(e[15] = k * w - l * R + b * z),
e
);
}
static determinant(e) {
let t = e[0],
n = e[1],
r = e[2],
a = e[3],
s = e[4],
i = e[5],
c = e[6],
y = e[7],
L = e[8],
k = e[9],
l = e[10],
b = e[11],
M = e[12],
d = e[13],
m = e[14],
o = e[15],
x = t * i - n * s,
z = t * c - r * s,
R = n * c - r * i,
V = L * d - k * M,
w = L * m - l * M,
g = k * m - l * d,
T = t * g - n * w + r * V,
E = s * g - i * w + c * V,
F = L * R - k * z + l * x,
f = M * R - d * z + m * x;
return y * T - a * E + o * F - b * f;
}
static multiply(e, t, n) {
let r = t[0],
a = t[1],
s = t[2],
i = t[3],
c = t[4],
y = t[5],
L = t[6],
k = t[7],
l = t[8],
b = t[9],
M = t[10],
d = t[11],
m = t[12],
o = t[13],
x = t[14],
z = t[15],
R = n[0],
V = n[1],
w = n[2],
g = n[3];
return (
(e[0] = R * r + V * c + w * l + g * m),
(e[1] = R * a + V * y + w * b + g * o),
(e[2] = R * s + V * L + w * M + g * x),
(e[3] = R * i + V * k + w * d + g * z),
(R = n[4]),
(V = n[5]),
(w = n[6]),
(g = n[7]),
(e[4] = R * r + V * c + w * l + g * m),
(e[5] = R * a + V * y + w * b + g * o),
(e[6] = R * s + V * L + w * M + g * x),
(e[7] = R * i + V * k + w * d + g * z),
(R = n[8]),
(V = n[9]),
(w = n[10]),
(g = n[11]),
(e[8] = R * r + V * c + w * l + g * m),
(e[9] = R * a + V * y + w * b + g * o),
(e[10] = R * s + V * L + w * M + g * x),
(e[11] = R * i + V * k + w * d + g * z),
(R = n[12]),
(V = n[13]),
(w = n[14]),
(g = n[15]),
(e[12] = R * r + V * c + w * l + g * m),
(e[13] = R * a + V * y + w * b + g * o),
(e[14] = R * s + V * L + w * M + g * x),
(e[15] = R * i + V * k + w * d + g * z),
e
);
}
static mul(e, t, n) {
return e;
}
static translate(e, t, n) {
let r = n[0],
a = n[1],
s = n[2];
if (t === e)
(e[12] = t[0] * r + t[4] * a + t[8] * s + t[12]),
(e[13] = t[1] * r + t[5] * a + t[9] * s + t[13]),
(e[14] = t[2] * r + t[6] * a + t[10] * s + t[14]),
(e[15] = t[3] * r + t[7] * a + t[11] * s + t[15]);
else {
let i = t[0],
c = t[1],
y = t[2],
L = t[3],
k = t[4],
l = t[5],
b = t[6],
M = t[7],
d = t[8],
m = t[9],
o = t[10],
x = t[11];
(e[0] = i),
(e[1] = c),
(e[2] = y),
(e[3] = L),
(e[4] = k),
(e[5] = l),
(e[6] = b),
(e[7] = M),
(e[8] = d),
(e[9] = m),
(e[10] = o),
(e[11] = x),
(e[12] = i * r + k * a + d * s + t[12]),
(e[13] = c * r + l * a + m * s + t[13]),
(e[14] = y * r + b * a + o * s + t[14]),
(e[15] = L * r + M * a + x * s + t[15]);
}
return e;
}
static scale(e, t, n) {
let r = n[0],
a = n[1],
s = n[2];
return (
(e[0] = t[0] * r),
(e[1] = t[1] * r),
(e[2] = t[2] * r),
(e[3] = t[3] * r),
(e[4] = t[4] * a),
(e[5] = t[5] * a),
(e[6] = t[6] * a),
(e[7] = t[7] * a),
(e[8] = t[8] * s),
(e[9] = t[9] * s),
(e[10] = t[10] * s),
(e[11] = t[11] * s),
(e[12] = t[12]),
(e[13] = t[13]),
(e[14] = t[14]),
(e[15] = t[15]),
e
);
}
static rotate(e, t, n, r) {
let a = r[0],
s = r[1],
i = r[2],
c = Math.sqrt(a * a + s * s + i * i);
if (c < 1e-6) return null;
(c = 1 / c), (a *= c), (s *= c), (i *= c);
let y = Math.sin(n),
L = Math.cos(n),
k = 1 - L,
l = t[0],
b = t[1],
M = t[2],
d = t[3],
m = t[4],
o = t[5],
x = t[6],
z = t[7],
R = t[8],
V = t[9],
w = t[10],
g = t[11],
T = a * a * k + L,
E = s * a * k + i * y,
F = i * a * k - s * y,
f = a * s * k - i * y,
N = s * s * k + L,
B = i * s * k + a * y,
D = a * i * k + s * y,
Q = s * i * k - a * y,
Z = i * i * k + L;
return (
(e[0] = l * T + m * E + R * F),
(e[1] = b * T + o * E + V * F),
(e[2] = M * T + x * E + w * F),
(e[3] = d * T + z * E + g * F),
(e[4] = l * f + m * N + R * B),
(e[5] = b * f + o * N + V * B),
(e[6] = M * f + x * N + w * B),
(e[7] = d * f + z * N + g * B),
(e[8] = l * D + m * Q + R * Z),
(e[9] = b * D + o * Q + V * Z),
(e[10] = M * D + x * Q + w * Z),
(e[11] = d * D + z * Q + g * Z),
t !== e &&
((e[12] = t[12]),
(e[13] = t[13]),
(e[14] = t[14]),
(e[15] = t[15])),
e
);
}
static rotateX(e, t, n) {
let r = Math.sin(n),
a = Math.cos(n),
s = t[4],
i = t[5],
c = t[6],
y = t[7],
L = t[8],
k = t[9],
l = t[10],
b = t[11];
return (
t !== e &&
((e[0] = t[0]),
(e[1] = t[1]),
(e[2] = t[2]),
(e[3] = t[3]),
(e[12] = t[12]),
(e[13] = t[13]),
(e[14] = t[14]),
(e[15] = t[15])),
(e[4] = s * a + L * r),
(e[5] = i * a + k * r),
(e[6] = c * a + l * r),
(e[7] = y * a + b * r),
(e[8] = L * a - s * r),
(e[9] = k * a - i * r),
(e[10] = l * a - c * r),
(e[11] = b * a - y * r),
e
);
}
static rotateY(e, t, n) {
let r = Math.sin(n),
a = Math.cos(n),
s = t[0],
i = t[1],
c = t[2],
y = t[3],
L = t[8],
k = t[9],
l = t[10],
b = t[11];
return (
t !== e &&
((e[4] = t[4]),
(e[5] = t[5]),
(e[6] = t[6]),
(e[7] = t[7]),
(e[12] = t[12]),
(e[13] = t[13]),
(e[14] = t[14]),
(e[15] = t[15])),
(e[0] = s * a - L * r),
(e[1] = i * a - k * r),
(e[2] = c * a - l * r),
(e[3] = y * a - b * r),
(e[8] = s * r + L * a),
(e[9] = i * r + k * a),
(e[10] = c * r + l * a),
(e[11] = y * r + b * a),
e
);
}
static rotateZ(e, t, n) {
let r = Math.sin(n),
a = Math.cos(n),
s = t[0],
i = t[1],
c = t[2],
y = t[3],
L = t[4],
k = t[5],
l = t[6],
b = t[7];
return (
t !== e &&
((e[8] = t[8]),
(e[9] = t[9]),
(e[10] = t[10]),
(e[11] = t[11]),
(e[12] = t[12]),
(e[13] = t[13]),
(e[14] = t[14]),
(e[15] = t[15])),
(e[0] = s * a + L * r),
(e[1] = i * a + k * r),
(e[2] = c * a + l * r),
(e[3] = y * a + b * r),
(e[4] = L * a - s * r),
(e[5] = k * a - i * r),
(e[6] = l * a - c * r),
(e[7] = b * a - y * r),
e
);
}
static fromTranslation(e, t) {
return (
(e[0] = 1),
(e[1] = 0),
(e[2] = 0),
(e[3] = 0),
(e[4] = 0),
(e[5] = 1),
(e[6] = 0),
(e[7] = 0),
(e[8] = 0),
(e[9] = 0),
(e[10] = 1),
(e[11] = 0),
(e[12] = t[0]),
(e[13] = t[1]),
(e[14] = t[2]),
(e[15] = 1),
e
);
}
static fromScaling(e, t) {
return (
(e[0] = t[0]),
(e[1] = 0),
(e[2] = 0),
(e[3] = 0),
(e[4] = 0),
(e[5] = t[1]),
(e[6] = 0),
(e[7] = 0),
(e[8] = 0),
(e[9] = 0),
(e[10] = t[2]),
(e[11] = 0),
(e[12] = 0),
(e[13] = 0),
(e[14] = 0),
(e[15] = 1),
e
);
}
static fromRotation(e, t, n) {
let r = n[0],
a = n[1],
s = n[2],
i = Math.sqrt(r * r + a * a + s * s);
if (i < 1e-6) return null;
(i = 1 / i), (r *= i), (a *= i), (s *= i);
let c = Math.sin(t),
y = Math.cos(t),
L = 1 - y;
return (
(e[0] = r * r * L + y),
(e[1] = a * r * L + s * c),
(e[2] = s * r * L - a * c),
(e[3] = 0),
(e[4] = r * a * L - s * c),
(e[5] = a * a * L + y),
(e[6] = s * a * L + r * c),
(e[7] = 0),
(e[8] = r * s * L + a * c),
(e[9] = a * s * L - r * c),
(e[10] = s * s * L + y),
(e[11] = 0),
(e[12] = 0),
(e[13] = 0),
(e[14] = 0),
(e[15] = 1),
e
);
}
static fromXRotation(e, t) {
let n = Math.sin(t),
r = Math.cos(t);
return (
(e[0] = 1),
(e[1] = 0),
(e[2] = 0),
(e[3] = 0),
(e[4] = 0),
(e[5] = r),
(e[6] = n),
(e[7] = 0),
(e[8] = 0),
(e[9] = -n),
(e[10] = r),
(e[11] = 0),
(e[12] = 0),
(e[13] = 0),
(e[14] = 0),
(e[15] = 1),
e
);
}
static fromYRotation(e, t) {
let n = Math.sin(t),
r = Math.cos(t);
return (
(e[0] = r),
(e[1] = 0),
(e[2] = -n),
(e[3] = 0),
(e[4] = 0),
(e[5] = 1),
(e[6] = 0),
(e[7] = 0),
(e[8] = n),
(e[9] = 0),
(e[10] = r),
(e[11] = 0),
(e[12] = 0),
(e[13] = 0),
(e[14] = 0),
(e[15] = 1),
e
);
}
static fromZRotation(e, t) {
let n = Math.sin(t),
r = Math.cos(t);
return (
(e[0] = r),
(e[1] = n),
(e[2] = 0),
(e[3] = 0),
(e[4] = -n),
(e[5] = r),
(e[6] = 0),
(e[7] = 0),
(e[8] = 0),
(e[9] = 0),
(e[10] = 1),
(e[11] = 0),
(e[12] = 0),
(e[13] = 0),
(e[14] = 0),
(e[15] = 1),
e
);
}
static fromRotationTranslation(e, t, n) {
let r = t[0],
a = t[1],
s = t[2],
i = t[3],
c = r + r,
y = a + a,
L = s + s,
k = r * c,
l = r * y,
b = r * L,
M = a * y,
d = a * L,
m = s * L,
o = i * c,
x = i * y,
z = i * L;
return (
(e[0] = 1 - (M + m)),
(e[1] = l + z),
(e[2] = b - x),
(e[3] = 0),
(e[4] = l - z),
(e[5] = 1 - (k + m)),
(e[6] = d + o),
(e[7] = 0),
(e[8] = b + x),
(e[9] = d - o),
(e[10] = 1 - (k + M)),
(e[11] = 0),
(e[12] = n[0]),
(e[13] = n[1]),
(e[14] = n[2]),
(e[15] = 1),
e
);
}
static fromQuat2(e, t) {
let n = -t[0],
r = -t[1],
a = -t[2],
s = t[3],
i = t[4],
c = t[5],
y = t[6],
L = t[7],
k = n * n + r * r + a * a + s * s;
return (
k > 0
? ((Y[0] = ((i * s + L * n + c * a - y * r) * 2) / k),
(Y[1] = ((c * s + L * r + y * n - i * a) * 2) / k),
(Y[2] = ((y * s + L * a + i * r - c * n) * 2) / k))
: ((Y[0] = (i * s + L * n + c * a - y * r) * 2),
(Y[1] = (c * s + L * r + y * n - i * a) * 2),
(Y[2] = (y * s + L * a + i * r - c * n) * 2)),
h.fromRotationTranslation(e, t, Y),
e
);
}
static normalFromMat4(e, t) {
let n = t[0],
r = t[1],
a = t[2],
s = t[3],
i = t[4],
c = t[5],
y = t[6],
L = t[7],
k = t[8],
l = t[9],
b = t[10],
M = t[11],
d = t[12],
m = t[13],
o = t[14],
x = t[15],
z = n * c - r * i,
R = n * y - a * i,
V = n * L - s * i,
w = r * y - a * c,
g = r * L - s * c,
T = a * L - s * y,
E = k * m - l * d,
F = k * o - b * d,
f = k * x - M * d,
N = l * o - b * m,
B = l * x - M * m,
D = b * x - M * o,
Q = z * D - R * B + V * N + w * f - g * F + T * E;
return Q
? ((Q = 1 / Q),
(e[0] = (c * D - y * B + L * N) * Q),
(e[1] = (y * f - i * D - L * F) * Q),
(e[2] = (i * B - c * f + L * E) * Q),
(e[3] = 0),
(e[4] = (a * B - r * D - s * N) * Q),
(e[5] = (n * D - a * f + s * F) * Q),
(e[6] = (r * f - n * B - s * E) * Q),
(e[7] = 0),
(e[8] = (m * T - o * g + x * w) * Q),
(e[9] = (o * V - d * T - x * R) * Q),
(e[10] = (d * g - m * V + x * z) * Q),
(e[11] = 0),
(e[12] = 0),
(e[13] = 0),
(e[14] = 0),
(e[15] = 1),
e)
: null;
}
static normalFromMat4Fast(e, t) {
let n = t[0],
r = t[1],
a = t[2],
s = t[4],
i = t[5],
c = t[6],
y = t[8],
L = t[9],
k = t[10];
return (
(e[0] = i * k - k * L),
(e[1] = c * y - y * k),
(e[2] = s * L - L * y),
(e[3] = 0),
(e[4] = L * a - k * r),
(e[5] = k * n - y * a),
(e[6] = y * r - L * n),
(e[7] = 0),
(e[8] = r * c - a * i),
(e[9] = a * s - n * c),
(e[10] = n * i - r * s),
(e[11] = 0),
(e[12] = 0),
(e[13] = 0),
(e[14] = 0),
(e[15] = 1),
e
);
}
static getTranslation(e, t) {
return (e[0] = t[12]), (e[1] = t[13]), (e[2] = t[14]), e;
}
static getScaling(e, t) {
let n = t[0],
r = t[1],
a = t[2],
s = t[4],
i = t[5],
c = t[6],
y = t[8],
L = t[9],
k = t[10];
return (
(e[0] = Math.sqrt(n * n + r * r + a * a)),
(e[1] = Math.sqrt(s * s + i * i + c * c)),
(e[2] = Math.sqrt(y * y + L * L + k * k)),
e
);
}
static getRotation(e, t) {
h.getScaling(Y, t);
let n = 1 / Y[0],
r = 1 / Y[1],
a = 1 / Y[2],
s = t[0] * n,
i = t[1] * r,
c = t[2] * a,
y = t[4] * n,
L = t[5] * r,
k = t[6] * a,
l = t[8] * n,
b = t[9] * r,
M = t[10] * a,
d = s + L + M,
m = 0;
return (
d > 0
? ((m = Math.sqrt(d + 1) * 2),
(e[3] = 0.25 * m),
(e[0] = (k - b) / m),
(e[1] = (l - c) / m),
(e[2] = (i - y) / m))
: s > L && s > M
? ((m = Math.sqrt(1 + s - L - M) * 2),
(e[3] = (k - b) / m),
(e[0] = 0.25 * m),
(e[1] = (i + y) / m),
(e[2] = (l + c) / m))
: L > M
? ((m = Math.sqrt(1 + L - s - M) * 2),
(e[3] = (l - c) / m),
(e[0] = (i + y) / m),
(e[1] = 0.25 * m),
(e[2] = (k + b) / m))
: ((m = Math.sqrt(1 + M - s - L) * 2),
(e[3] = (i - y) / m),
(e[0] = (l + c) / m),
(e[1] = (k + b) / m),
(e[2] = 0.25 * m)),
e
);
}
static decompose(e, t, n, r) {
(t[0] = r[12]), (t[1] = r[13]), (t[2] = r[14]);
let a = r[0],
s = r[1],
i = r[2],
c = r[4],
y = r[5],
L = r[6],
k = r[8],
l = r[9],
b = r[10];
(n[0] = Math.sqrt(a * a + s * s + i * i)),
(n[1] = Math.sqrt(c * c + y * y + L * L)),
(n[2] = Math.sqrt(k * k + l * l + b * b));
let M = 1 / n[0],
d = 1 / n[1],
m = 1 / n[2],
o = a * M,
x = s * d,
z = i * m,
R = c * M,
V = y * d,
w = L * m,
g = k * M,
T = l * d,
E = b * m,
F = o + V + E,
f = 0;
return (
F > 0
? ((f = Math.sqrt(F + 1) * 2),
(e[3] = 0.25 * f),
(e[0] = (w - T) / f),
(e[1] = (g - z) / f),
(e[2] = (x - R) / f))
: o > V && o > E
? ((f = Math.sqrt(1 + o - V - E) * 2),
(e[3] = (w - T) / f),
(e[0] = 0.25 * f),
(e[1] = (x + R) / f),
(e[2] = (g + z) / f))
: V > E
? ((f = Math.sqrt(1 + V - o - E) * 2),
(e[3] = (g - z) / f),
(e[0] = (x + R) / f),
(e[1] = 0.25 * f),
(e[2] = (w + T) / f))
: ((f = Math.sqrt(1 + E - o - V) * 2),
(e[3] = (x - R) / f),
(e[0] = (g + z) / f),
(e[1] = (w + T) / f),
(e[2] = 0.25 * f)),
e
);
}
static fromRotationTranslationScale(e, t, n, r) {
let a = t[0],
s = t[1],
i = t[2],
c = t[3],
y = a + a,
L = s + s,
k = i + i,
l = a * y,
b = a * L,
M = a * k,
d = s * L,
m = s * k,
o = i * k,
x = c * y,
z = c * L,
R = c * k,
V = r[0],
w = r[1],
g = r[2];
return (
(e[0] = (1 - (d + o)) * V),
(e[1] = (b + R) * V),
(e[2] = (M - z) * V),
(e[3] = 0),
(e[4] = (b - R) * w),
(e[5] = (1 - (l + o)) * w),
(e[6] = (m + x) * w),
(e[7] = 0),
(e[8] = (M + z) * g),
(e[9] = (m - x) * g),
(e[10] = (1 - (l + d)) * g),
(e[11] = 0),
(e[12] = n[0]),
(e[13] = n[1]),
(e[14] = n[2]),
(e[15] = 1),
e
);
}
static fromRotationTranslationScaleOrigin(e, t, n, r, a) {
let s = t[0],
i = t[1],
c = t[2],
y = t[3],
L = s + s,
k = i + i,
l = c + c,
b = s * L,
M = s * k,
d = s * l,
m = i * k,
o = i * l,
x = c * l,
z = y * L,
R = y * k,
V = y * l,
w = r[0],
g = r[1],
T = r[2],
E = a[0],
F = a[1],
f = a[2],
N = (1 - (m + x)) * w,
B = (M + V) * w,
D = (d - R) * w,
Q = (M - V) * g,
Z = (1 - (b + x)) * g,
W = (o + z) * g,
U = (d + R) * T,
K = (o - z) * T,
v = (1 - (b + m)) * T;
return (
(e[0] = N),
(e[1] = B),
(e[2] = D),
(e[3] = 0),
(e[4] = Q),
(e[5] = Z),
(e[6] = W),
(e[7] = 0),
(e[8] = U),
(e[9] = K),
(e[10] = v),
(e[11] = 0),
(e[12] = n[0] + E - (N * E + Q * F + U * f)),
(e[13] = n[1] + F - (B * E + Z * F + K * f)),
(e[14] = n[2] + f - (D * E + W * F + v * f)),
(e[15] = 1),
e
);
}
static fromQuat(e, t) {
let n = t[0],
r = t[1],
a = t[2],
s = t[3],
i = n + n,
c = r + r,
y = a + a,
L = n * i,
k = r * i,
l = r * c,
b = a * i,
M = a * c,
d = a * y,
m = s * i,
o = s * c,
x = s * y;
return (
(e[0] = 1 - l - d),
(e[1] = k + x),
(e[2] = b - o),
(e[3] = 0),
(e[4] = k - x),
(e[5] = 1 - L - d),
(e[6] = M + m),
(e[7] = 0),
(e[8] = b + o),
(e[9] = M - m),
(e[10] = 1 - L - l),
(e[11] = 0),
(e[12] = 0),
(e[13] = 0),
(e[14] = 0),
(e[15] = 1),
e
);
}
static frustumNO(e, t, n, r, a, s, i = 1 / 0) {
let c = 1 / (n - t),
y = 1 / (a - r);
if (
((e[0] = s * 2 * c),
(e[1] = 0),
(e[2] = 0),
(e[3] = 0),
(e[4] = 0),
(e[5] = s * 2 * y),
(e[6] = 0),
(e[7] = 0),
(e[8] = (n + t) * c),
(e[9] = (a + r) * y),
(e[11] = -1),
(e[12] = 0),
(e[13] = 0),
(e[15] = 0),
i != null && i !== 1 / 0)
) {
let L = 1 / (s - i);
(e[10] = (i + s) * L), (e[14] = 2 * i * s * L);
} else (e[10] = -1), (e[14] = -2 * s);
return e;
}
static frustum(e, t, n, r, a, s, i = 1 / 0) {
return e;
}
static frustumZO(e, t, n, r, a, s, i = 1 / 0) {
let c = 1 / (n - t),
y = 1 / (a - r);
if (
((e[0] = s * 2 * c),
(e[1] = 0),
(e[2] = 0),
(e[3] = 0),
(e[4] = 0),
(e[5] = s * 2 * y),
(e[6] = 0),
(e[7] = 0),
(e[8] = (n + t) * c),
(e[9] = (a + r) * y),
(e[11] = -1),
(e[12] = 0),
(e[13] = 0),
(e[15] = 0),
i != null && i !== 1 / 0)
) {
let L = 1 / (s - i);
(e[10] = i * L), (e[14] = i * s * L);
} else (e[10] = -1), (e[14] = -s);
return e;
}
static perspectiveNO(e, t, n, r, a = 1 / 0) {
let s = 1 / Math.tan(t / 2);
if (
((e[0] = s / n),
(e[1] = 0),
(e[2] = 0),
(e[3] = 0),
(e[4] = 0),
(e[5] = s),
(e[6] = 0),
(e[7] = 0),
(e[8] = 0),
(e[9] = 0),
(e[11] = -1),
(e[12] = 0),
(e[13] = 0),
(e[15] = 0),
a != null && a !== 1 / 0)
) {
let i = 1 / (r - a);
(e[10] = (a + r) * i), (e[14] = 2 * a * r * i);
} else (e[10] = -1), (e[14] = -2 * r);
return e;
}
static perspective(e, t, n, r, a = 1 / 0) {
return e;
}
static perspectiveZO(e, t, n, r, a = 1 / 0) {
let s = 1 / Math.tan(t / 2);
if (
((e[0] = s / n),
(e[1] = 0),
(e[2] = 0),
(e[3] = 0),
(e[4] = 0),
(e[5] = s),
(e[6] = 0),
(e[7] = 0),
(e[8] = 0),
(e[9] = 0),
(e[11] = -1),
(e[12] = 0),
(e[13] = 0),
(e[15] = 0),
a != null && a !== 1 / 0)
) {
let i = 1 / (r - a);
(e[10] = a * i), (e[14] = a * r * i);
} else (e[10] = -1), (e[14] = -r);
return e;
}
static perspectiveFromFieldOfView(e, t, n, r) {
let a = Math.tan((t.upDegrees * Math.PI) / 180),
s = Math.tan((t.downDegrees * Math.PI) / 180),
i = Math.tan((t.leftDegrees * Math.PI) / 180),
c = Math.tan((t.rightDegrees * Math.PI) / 180),
y = 2 / (i + c),
L = 2 / (a + s);
return (
(e[0] = y),
(e[1] = 0),
(e[2] = 0),
(e[3] = 0),
(e[4] = 0),
(e[5] = L),
(e[6] = 0),
(e[7] = 0),
(e[8] = -((i - c) * y * 0.5)),
(e[9] = (a - s) * L * 0.5),
(e[10] = r / (n - r)),
(e[11] = -1),
(e[12] = 0),
(e[13] = 0),
(e[14] = (r * n) / (n - r)),
(e[15] = 0),
e
);
}
static orthoNO(e, t, n, r, a, s, i) {
let c = 1 / (t - n),
y = 1 / (r - a),
L = 1 / (s - i);
return (
(e[0] = -2 * c),
(e[1] = 0),
(e[2] = 0),
(e[3] = 0),
(e[4] = 0),
(e[5] = -2 * y),
(e[6] = 0),
(e[7] = 0),
(e[8] = 0),
(e[9] = 0),
(e[10] = 2 * L),
(e[11] = 0),
(e[12] = (t + n) * c),
(e[13] = (a + r) * y),
(e[14] = (i + s) * L),
(e[15] = 1),
e
);
}
static ortho(e, t, n, r, a, s, i) {
return e;
}
static orthoZO(e, t, n, r, a, s, i) {
let c = 1 / (t - n),
y = 1 / (r - a),
L = 1 / (s - i);
return (
(e[0] = -2 * c),
(e[1] = 0),
(e[2] = 0),
(e[3] = 0),
(e[4] = 0),
(e[5] = -2 * y),
(e[6] = 0),
(e[7] = 0),
(e[8] = 0),
(e[9] = 0),
(e[10] = L),
(e[11] = 0),
(e[12] = (t + n) * c),
(e[13] = (a + r) * y),
(e[14] = s * L),
(e[15] = 1),
e
);
}
static lookAt(e, t, n, r) {
let a = t[0],
s = t[1],
i = t[2],
c = r[0],
y = r[1],
L = r[2],
k = n[0],
l = n[1],
b = n[2];
if (
Math.abs(a - k) < 1e-6 &&
Math.abs(s - l) < 1e-6 &&
Math.abs(i - b) < 1e-6
)
return h.identity(e);
let M = a - k,
d = s - l,
m = i - b,
o = 1 / Math.sqrt(M * M + d * d + m * m);
(M *= o), (d *= o), (m *= o);
let x = y * m - L * d,
z = L * M - c * m,
R = c * d - y * M;
(o = Math.sqrt(x * x + z * z + R * R)),
o
? ((o = 1 / o), (x *= o), (z *= o), (R *= o))
: ((x = 0), (z = 0), (R = 0));
let V = d * R - m * z,
w = m * x - M * R,
g = M * z - d * x;
return (
(o = Math.sqrt(V * V + w * w + g * g)),
o
? ((o = 1 / o), (V *= o), (w *= o), (g *= o))
: ((V = 0), (w = 0), (g = 0)),
(e[0] = x),
(e[1] = V),
(e[2] = M),
(e[3] = 0),
(e[4] = z),
(e[5] = w),
(e[6] = d),
(e[7] = 0),
(e[8] = R),
(e[9] = g),
(e[10] = m),
(e[11] = 0),
(e[12] = -(x * a + z * s + R * i)),
(e[13] = -(V * a + w * s + g * i)),
(e[14] = -(M * a + d * s + m * i)),
(e[15] = 1),
e
);
}
static targetTo(e, t, n, r) {
let a = t[0],
s = t[1],
i = t[2],
c = r[0],
y = r[1],
L = r[2],
k = a - n[0],
l = s - n[1],
b = i - n[2],
M = k * k + l * l + b * b;
M > 0 && ((M = 1 / Math.sqrt(M)), (k *= M), (l *= M), (b *= M));
let d = y * b - L * l,
m = L * k - c * b,
o = c * l - y * k;
return (
(M = d * d + m * m + o * o),
M > 0 && ((M = 1 / Math.sqrt(M)), (d *= M), (m *= M), (o *= M)),
(e[0] = d),
(e[1] = m),
(e[2] = o),
(e[3] = 0),
(e[4] = l * o - b * m),
(e[5] = b * d - k * o),
(e[6] = k * m - l * d),
(e[7] = 0),
(e[8] = k),
(e[9] = l),
(e[10] = b),
(e[11] = 0),
(e[12] = a),
(e[13] = s),
(e[14] = i),
(e[15] = 1),
e
);
}
static frob(e) {
return Math.sqrt(
e[0] * e[0] +
e[1] * e[1] +
e[2] * e[2] +
e[3] * e[3] +
e[4] * e[4] +
e[5] * e[5] +
e[6] * e[6] +
e[7] * e[7] +
e[8] * e[8] +
e[9] * e[9] +
e[10] * e[10] +
e[11] * e[11] +
e[12] * e[12] +
e[13] * e[13] +
e[14] * e[14] +
e[15] * e[15],
);
}
static add(e, t, n) {
return (
(e[0] = t[0] + n[0]),
(e[1] = t[1] + n[1]),
(e[2] = t[2] + n[2]),
(e[3] = t[3] + n[3]),
(e[4] = t[4] + n[4]),
(e[5] = t[5] + n[5]),
(e[6] = t[6] + n[6]),
(e[7] = t[7] + n[7]),
(e[8] = t[8] + n[8]),
(e[9] = t[9] + n[9]),
(e[10] = t[10] + n[10]),
(e[11] = t[11] + n[11]),
(e[12] = t[12] + n[12]),
(e[13] = t[13] + n[13]),
(e[14] = t[14] + n[14]),
(e[15] = t[15] + n[15]),
e
);
}
static subtract(e, t, n) {
return (
(e[0] = t[0] - n[0]),
(e[1] = t[1] - n[1]),
(e[2] = t[2] - n[2]),
(e[3] = t[3] - n[3]),
(e[4] = t[4] - n[4]),
(e[5] = t[5] - n[5]),
(e[6] = t[6] - n[6]),
(e[7] = t[7] - n[7]),
(e[8] = t[8] - n[8]),
(e[9] = t[9] - n[9]),
(e[10] = t[10] - n[10]),
(e[11] = t[11] - n[11]),
(e[12] = t[12] - n[12]),
(e[13] = t[13] - n[13]),
(e[14] = t[14] - n[14]),
(e[15] = t[15] - n[15]),
e
);
}
static sub(e, t, n) {
return e;
}
static multiplyScalar(e, t, n) {
return (
(e[0] = t[0] * n),
(e[1] = t[1] * n),
(e[2] = t[2] * n),
(e[3] = t[3] * n),
(e[4] = t[4] * n),
(e[5] = t[5] * n),
(e[6] = t[6] * n),
(e[7] = t[7] * n),
(e[8] = t[8] * n),
(e[9] = t[9] * n),
(e[10] = t[10] * n),
(e[11] = t[11] * n),
(e[12] = t[12] * n),
(e[13] = t[13] * n),
(e[14] = t[14] * n),
(e[15] = t[15] * n),
e
);
}
static multiplyScalarAndAdd(e, t, n, r) {
return (
(e[0] = t[0] + n[0] * r),
(e[1] = t[1] + n[1] * r),
(e[2] = t[2] + n[2] * r),
(e[3] = t[3] + n[3] * r),
(e[4] = t[4] + n[4] * r),
(e[5] = t[5] + n[5] * r),
(e[6] = t[6] + n[6] * r),
(e[7] = t[7] + n[7] * r),
(e[8] = t[8] + n[8] * r),
(e[9] = t[9] + n[9] * r),
(e[10] = t[10] + n[10] * r),
(e[11] = t[11] + n[11] * r),
(e[12] = t[12] + n[12] * r),
(e[13] = t[13] + n[13] * r),
(e[14] = t[14] + n[14] * r),
(e[15] = t[15] + n[15] * r),
e
);
}
static exactEquals(e, t) {
return (
e[0] === t[0] &&
e[1] === t[1] &&
e[2] === t[2] &&
e[3] === t[3] &&
e[4] === t[4] &&
e[5] === t[5] &&
e[6] === t[6] &&
e[7] === t[7] &&
e[8] === t[8] &&
e[9] === t[9] &&
e[10] === t[10] &&
e[11] === t[11] &&
e[12] === t[12] &&
e[13] === t[13] &&
e[14] === t[14] &&
e[15] === t[15]
);
}
static equals(e, t) {
let n = e[0],
r = e[1],
a = e[2],
s = e[3],
i = e[4],
c = e[5],
y = e[6],
L = e[7],
k = e[8],
l = e[9],
b = e[10],
M = e[11],
d = e[12],
m = e[13],
o = e[14],
x = e[15],
z = t[0],
R = t[1],
V = t[2],
w = t[3],
g = t[4],
T = t[5],
E = t[6],
F = t[7],
f = t[8],
N = t[9],
B = t[10],
D = t[11],
Q = t[12],
Z = t[13],
W = t[14],
U = t[15];
return (
Math.abs(n - z) <=
1e-6 * Math.max(1, Math.abs(n), Math.abs(z)) &&
Math.abs(r - R) <=
1e-6 * Math.max(1, Math.abs(r), Math.abs(R)) &&
Math.abs(a - V) <=
1e-6 * Math.max(1, Math.abs(a), Math.abs(V)) &&
Math.abs(s - w) <=
1e-6 * Math.max(1, Math.abs(s), Math.abs(w)) &&
Math.abs(i - g) <=
1e-6 * Math.max(1, Math.abs(i), Math.abs(g)) &&
Math.abs(c - T) <=
1e-6 * Math.max(1, Math.abs(c), Math.abs(T)) &&
Math.abs(y - E) <=
1e-6 * Math.max(1, Math.abs(y), Math.abs(E)) &&
Math.abs(L - F) <=
1e-6 * Math.max(1, Math.abs(L), Math.abs(F)) &&
Math.abs(k - f) <=
1e-6 * Math.max(1, Math.abs(k), Math.abs(f)) &&
Math.abs(l - N) <=
1e-6 * Math.max(1, Math.abs(l), Math.abs(N)) &&
Math.abs(b - B) <=
1e-6 * Math.max(1, Math.abs(b), Math.abs(B)) &&
Math.abs(M - D) <=
1e-6 * Math.max(1, Math.abs(M), Math.abs(D)) &&
Math.abs(d - Q) <=
1e-6 * Math.max(1, Math.abs(d), Math.abs(Q)) &&
Math.abs(m - Z) <=
1e-6 * Math.max(1, Math.abs(m), Math.abs(Z)) &&
Math.abs(o - W) <=
1e-6 * Math.max(1, Math.abs(o), Math.abs(W)) &&
Math.abs(x - U) <= 1e-6 * Math.max(1, Math.abs(x), Math.abs(U))
);
}
static str(e) {
return `Mat4(${e.join(', ')})`;
}
},
Y = new Float32Array(3);
O.prototype.mul = O.prototype.multiply;
O.sub = O.subtract;
O.mul = O.multiply;
O.frustum = O.frustumNO;
O.perspective = O.perspectiveNO;
O.ortho = O.orthoNO;
var le = O;
var A = class h extends Float32Array {
static BYTE_LENGTH = 3 * Float32Array.BYTES_PER_ELEMENT;
constructor(...e) {
switch (e.length) {
case 3:
super(e);
break;
case 2:
super(e[0], e[1], 3);
break;
case 1: {
let t = e[0];
typeof t == 'number' ? super([t, t, t]) : super(t, 0, 3);
break;
}
default:
super(3);
break;
}
}
get x() {
return this[0];
}
set x(e) {
this[0] = e;
}
get y() {
return this[1];
}
set y(e) {
this[1] = e;
}
get z() {
return this[2];
}
set z(e) {
this[2] = e;
}
get r() {
return this[0];
}
set r(e) {
this[0] = e;
}
get g() {
return this[1];
}
set g(e) {
this[1] = e;
}
get b() {
return this[2];
}
set b(e) {
this[2] = e;
}
get magnitude() {
let e = this[0],
t = this[1],
n = this[2];
return Math.sqrt(e * e + t * t + n * n);
}
get mag() {
return this.magnitude;
}
get squaredMagnitude() {
let e = this[0],
t = this[1],
n = this[2];
return e * e + t * t + n * n;
}
get sqrMag() {
return this.squaredMagnitude;
}
get str() {
return h.str(this);
}
copy(e) {
return this.set(e), this;
}
add(e) {
return (this[0] += e[0]), (this[1] += e[1]), (this[2] += e[2]), this;
}
subtract(e) {
return (this[0] -= e[0]), (this[1] -= e[1]), (this[2] -= e[2]), this;
}
sub(e) {
return this;
}
multiply(e) {
return (this[0] *= e[0]), (this[1] *= e[1]), (this[2] *= e[2]), this;
}
mul(e) {
return this;
}
divide(e) {
return (this[0] /= e[0]), (this[1] /= e[1]), (this[2] /= e[2]), this;
}
div(e) {
return this;
}
scale(e) {
return (this[0] *= e), (this[1] *= e), (this[2] *= e), this;
}
scaleAndAdd(e, t) {
return (
(this[0] += e[0] * t),
(this[1] += e[1] * t),
(this[2] += e[2] * t),
this
);
}
distance(e) {
return h.distance(this, e);
}
dist(e) {
return 0;
}
squaredDistance(e) {
return h.squaredDistance(this, e);
}
sqrDist(e) {
return 0;
}
negate() {
return (this[0] *= -1), (this[1] *= -1), (this[2] *= -1), this;
}
invert() {
return (
(this[0] = 1 / this[0]),
(this[1] = 1 / this[1]),
(this[2] = 1 / this[2]),
this
);
}
abs() {
return (
(this[0] = Math.abs(this[0])),
(this[1] = Math.abs(this[1])),
(this[2] = Math.abs(this[2])),
this
);
}
dot(e) {
return this[0] * e[0] + this[1] * e[1] + this[2] * e[2];
}
normalize() {
return h.normalize(this, this);
}
static create() {
return new h();
}
static clone(e) {
return new h(e);
}
static magnitude(e) {
let t = e[0],
n = e[1],
r = e[2];
return Math.sqrt(t * t + n * n + r * r);
}
static mag(e) {
return 0;
}
static length(e) {
return 0;
}
static len(e) {
return 0;
}
static fromValues(e, t, n) {
return new h(e, t, n);
}
static copy(e, t) {
return (e[0] = t[0]), (e[1] = t[1]), (e[2] = t[2]), e;
}
static set(e, t, n, r) {
return (e[0] = t), (e[1] = n), (e[2] = r), e;
}
static add(e, t, n) {
return (
(e[0] = t[0] + n[0]), (e[1] = t[1] + n[1]), (e[2] = t[2] + n[2]), e
);
}
static subtract(e, t, n) {
return (
(e[0] = t[0] - n[0]), (e[1] = t[1] - n[1]), (e[2] = t[2] - n[2]), e
);
}
static sub(e, t, n) {
return [0, 0, 0];
}
static multiply(e, t, n) {
return (
(e[0] = t[0] * n[0]), (e[1] = t[1] * n[1]), (e[2] = t[2] * n[2]), e
);
}
static mul(e, t, n) {
return [0, 0, 0];
}
static divide(e, t, n) {
return (
(e[0] = t[0] / n[0]), (e[1] = t[1] / n[1]), (e[2] = t[2] / n[2]), e
);
}
static div(e, t, n) {
return [0, 0, 0];
}
static ceil(e, t) {
return (
(e[0] = Math.ceil(t[0])),
(e[1] = Math.ceil(t[1])),
(e[2] = Math.ceil(t[2])),
e
);
}
static floor(e, t) {
return (
(e[0] = Math.floor(t[0])),
(e[1] = Math.floor(t[1])),
(e[2] = Math.floor(t[2])),
e
);
}
static min(e, t, n) {
return (
(e[0] = Math.min(t[0], n[0])),
(e[1] = Math.min(t[1], n[1])),
(e[2] = Math.min(t[2], n[2])),
e
);
}
static max(e, t, n) {
return (
(e[0] = Math.max(t[0], n[0])),
(e[1] = Math.max(t[1], n[1])),
(e[2] = Math.max(t[2], n[2])),
e
);
}
static round(e, t) {
return (
(e[0] = Math.round(t[0])),
(e[1] = Math.round(t[1])),
(e[2] = Math.round(t[2])),
e
);
}
static scale(e, t, n) {
return (e[0] = t[0] * n), (e[1] = t[1] * n), (e[2] = t[2] * n), e;
}
static scaleAndAdd(e, t, n, r) {
return (
(e[0] = t[0] + n[0] * r),
(e[1] = t[1] + n[1] * r),
(e[2] = t[2] + n[2] * r),
e
);
}
static distance(e, t) {
let n = t[0] - e[0],
r = t[1] - e[1],
a = t[2] - e[2];
return Math.sqrt(n * n + r * r + a * a);
}
static dist(e, t) {
return 0;
}
static squaredDistance(e, t) {
let n = t[0] - e[0],
r = t[1] - e[1],
a = t[2] - e[2];
return n * n + r * r + a * a;
}
static sqrDist(e, t) {
return 0;
}
static squaredLength(e) {
let t = e[0],
n = e[1],
r = e[2];
return t * t + n * n + r * r;
}
static sqrLen(e, t) {
return 0;
}
static negate(e, t) {
return (e[0] = -t[0]), (e[1] = -t[1]), (e[2] = -t[2]), e;
}
static inverse(e, t) {
return (e[0] = 1 / t[0]), (e[1] = 1 / t[1]), (e[2] = 1 / t[2]), e;
}
static abs(e, t) {
return (
(e[0] = Math.abs(t[0])),
(e[1] = Math.abs(t[1])),
(e[2] = Math.abs(t[2])),
e
);
}
static normalize(e, t) {
let n = t[0],
r = t[1],
a = t[2],
s = n * n + r * r + a * a;
return (
s > 0 && (s = 1 / Math.sqrt(s)),
(e[0] = t[0] * s),
(e[1] = t[1] * s),
(e[2] = t[2] * s),
e
);
}
static dot(e, t) {
return e[0] * t[0] + e[1] * t[1] + e[2] * t[2];
}
static cross(e, t, n) {
let r = t[0],
a = t[1],
s = t[2],
i = n[0],
c = n[1],
y = n[2];
return (
(e[0] = a * y - s * c),
(e[1] = s * i - r * y),
(e[2] = r * c - a * i),
e
);
}
static lerp(e, t, n, r) {
let a = t[0],
s = t[1],
i = t[2];
return (
(e[0] = a + r * (n[0] - a)),
(e[1] = s + r * (n[1] - s)),
(e[2] = i + r * (n[2] - i)),
e
);
}
static slerp(e, t, n, r) {
let a = Math.acos(Math.min(Math.max(h.dot(t, n), -1), 1)),
s = Math.sin(a),
i = Math.sin((1 - r) * a) / s,
c = Math.sin(r * a) / s;
return (
(e[0] = i * t[0] + c * n[0]),
(e[1] = i * t[1] + c * n[1]),
(e[2] = i * t[2] + c * n[2]),
e
);
}
static hermite(e, t, n, r, a, s) {
let i = s * s,
c = i * (2 * s - 3) + 1,
y = i * (s - 2) + s,
L = i * (s - 1),
k = i * (3 - 2 * s);
return (
(e[0] = t[0] * c + n[0] * y + r[0] * L + a[0] * k),
(e[1] = t[1] * c + n[1] * y + r[1] * L + a[1] * k),
(e[2] = t[2] * c + n[2] * y + r[2] * L + a[2] * k),
e
);
}
static bezier(e, t, n, r, a, s) {
let i = 1 - s,
c = i * i,
y = s * s,
L = c * i,
k = 3 * s * c,
l = 3 * y * i,
b = y * s;
return (
(e[0] = t[0] * L + n[0] * k + r[0] * l + a[0] * b),
(e[1] = t[1] * L + n[1] * k + r[1] * l + a[1] * b),
(e[2] = t[2] * L + n[2] * k + r[2] * l + a[2] * b),
e
);
}
static random(e, t) {
t = t === void 0 ? 1 : t;
let n = Math.random() * 2 * Math.PI,
r = Math.random() * 2 - 1,
a = Math.sqrt(1 - r * r) * t;
return (
(e[0] = Math.cos(n) * a),
(e[1] = Math.sin(n) * a),
(e[2] = r * t),
e
);
}
static transformMat4(e, t, n) {
let r = t[0],
a = t[1],
s = t[2],
i = n[3] * r + n[7] * a + n[11] * s + n[15] || 1;
return (
(e[0] = (n[0] * r + n[4] * a + n[8] * s + n[12]) / i),
(e[1] = (n[1] * r + n[5] * a + n[9] * s + n[13]) / i),
(e[2] = (n[2] * r + n[6] * a + n[10] * s + n[14]) / i),
e
);
}
static transformMat3(e, t, n) {
let r = t[0],
a = t[1],
s = t[2];
return (
(e[0] = r * n[0] + a * n[3] + s * n[6]),
(e[1] = r * n[1] + a * n[4] + s * n[7]),
(e[2] = r * n[2] + a * n[5] + s * n[8]),
e
);
}
static transformQuat(e, t, n) {
let r = n[0],
a = n[1],
s = n[2],
i = n[3] * 2,
c = t[0],
y = t[1],
L = t[2],
k = a * L - s * y,
l = s * c - r * L,
b = r * y - a * c,
M = (a * b - s * l) * 2,
d = (s * k - r * b) * 2,
m = (r * l - a * k) * 2;
return (
(e[0] = c + k * i + M),
(e[1] = y + l * i + d),
(e[2] = L + b * i + m),
e
);
}
static rotateX(e, t, n, r) {
let a = n[1],
s = n[2],
i = t[1] - a,
c = t[2] - s;
return (
(e[0] = t[0]),
(e[1] = i * Math.cos(r) - c * Math.sin(r) + a),
(e[2] = i * Math.sin(r) + c * Math.cos(r) + s),
e
);
}
static rotateY(e, t, n, r) {
let a = n[0],
s = n[2],
i = t[0] - a,
c = t[2] - s;
return (
(e[0] = c * Math.sin(r) + i * Math.cos(r) + a),
(e[1] = t[1]),
(e[2] = c * Math.cos(r) - i * Math.sin(r) + s),
e
);
}
static rotateZ(e, t, n, r) {
let a = n[0],
s = n[1],
i = t[0] - a,
c = t[1] - s;
return (
(e[0] = i * Math.cos(r) - c * Math.sin(r) + a),
(e[1] = i * Math.sin(r) + c * Math.cos(r) + s),
(e[2] = n[2]),
e
);
}
static angle(e, t) {
let n = e[0],
r = e[1],
a = e[2],
s = t[0],
i = t[1],
c = t[2],
y = Math.sqrt((n * n + r * r + a * a) * (s * s + i * i + c * c)),
L = y && h.dot(e, t) / y;
return Math.acos(Math.min(Math.max(L, -1), 1));
}
static zero(e) {
return (e[0] = 0), (e[1] = 0), (e[2] = 0), e;
}
static str(e) {
return `Vec3(${e.join(', ')})`;
}
static exactEquals(e, t) {
return e[0] === t[0] && e[1] === t[1] && e[2] === t[2];
}
static equals(e, t) {
let n = e[0],
r = e[1],
a = e[2],
s = t[0],
i = t[1],
c = t[2];
return (
Math.abs(n - s) <= 1e-6 * Math.max(1, Math.abs(n), Math.abs(s)) &&
Math.abs(r - i) <= 1e-6 * Math.max(1, Math.abs(r), Math.abs(i)) &&
Math.abs(a - c) <= 1e-6 * Math.max(1, Math.abs(a), Math.abs(c))
);
}
};
A.prototype.sub = A.prototype.subtract;
A.prototype.mul = A.prototype.multiply;
A.prototype.div = A.prototype.divide;
A.prototype.dist = A.prototype.distance;
A.prototype.sqrDist = A.prototype.squaredDistance;
A.sub = A.subtract;
A.mul = A.multiply;
A.div = A.divide;
A.dist = A.distance;
A.sqrDist = A.squaredDistance;
A.sqrLen = A.squaredLength;
A.mag = A.magnitude;
A.length = A.magnitude;
A.len = A.magnitude;
var Me = A;
var q = class h extends Float32Array {
static BYTE_LENGTH = 4 * Float32Array.BYTES_PER_ELEMENT;
constructor(...e) {
switch (e.length) {
case 4:
super(e);
break;
case 2:
super(e[0], e[1], 4);
break;
case 1: {
let t = e[0];
typeof t == 'number' ? super([t, t, t, t]) : super(t, 0, 4);
break;
}
default:
super(4);
break;
}
}
get x() {
return this[0];
}
set x(e) {
this[0] = e;
}
get y() {
return this[1];
}
set y(e) {
this[1] = e;
}
get z() {
return this[2];
}
set z(e) {
this[2] = e;
}
get w() {
return this[3];
}
set w(e) {
this[3] = e;
}
get r() {
return this[0];
}
set r(e) {
this[0] = e;
}
get g() {
return this[1];
}
set g(e) {
this[1] = e;
}
get b() {
return this[2];
}
set b(e) {
this[2] = e;
}
get a() {
return this[3];
}
set a(e) {
this[3] = e;
}
get magnitude() {
let e = this[0],
t = this[1],
n = this[2],
r = this[3];
return Math.sqrt(e * e + t * t + n * n + r * r);
}
get mag() {
return this.magnitude;
}
get str() {
return h.str(this);
}
copy(e) {
return super.set(e), this;
}
add(e) {
return (
(this[0] += e[0]),
(this[1] += e[1]),
(this[2] += e[2]),
(this[3] += e[3]),
this
);
}
subtract(e) {
return (
(this[0] -= e[0]),
(this[1] -= e[1]),
(this[2] -= e[2]),
(this[3] -= e[3]),
this
);
}
sub(e) {
return this;
}
multiply(e) {
return (
(this[0] *= e[0]),
(this[1] *= e[1]),
(this[2] *= e[2]),
(this[3] *= e[3]),
this
);
}
mul(e) {
return this;
}
divide(e) {
return (
(this[0] /= e[0]),
(this[1] /= e[1]),
(this[2] /= e[2]),
(this[3] /= e[3]),
this
);
}
div(e) {
return this;
}
scale(e) {
return (
(this[0] *= e), (this[1] *= e), (this[2] *= e), (this[3] *= e), this
);
}
scaleAndAdd(e, t) {
return (
(this[0] += e[0] * t),
(this[1] += e[1] * t),
(this[2] += e[2] * t),
(this[3] += e[3] * t),
this
);
}
distance(e) {
return h.distance(this, e);
}
dist(e) {
return 0;
}
squaredDistance(e) {
return h.squaredDistance(this, e);
}
sqrDist(e) {
return 0;
}
negate() {
return (
(this[0] *= -1),
(this[1] *= -1),
(this[2] *= -1),
(this[3] *= -1),
this
);
}
invert() {
return (
(this[0] = 1 / this[0]),
(this[1] = 1 / this[1]),
(this[2] = 1 / this[2]),
(this[3] = 1 / this[3]),
this
);
}
abs() {
return (
(this[0] = Math.abs(this[0])),
(this[1] = Math.abs(this[1])),
(this[2] = Math.abs(this[2])),
(this[3] = Math.abs(this[3])),
this
);
}
dot(e) {
return (
this[0] * e[0] + this[1] * e[1] + this[2] * e[2] + this[3] * e[3]
);
}
normalize() {
return h.normalize(this, this);
}
static create() {
return new h();
}
static clone(e) {
return new h(e);
}
static fromValues(e, t, n, r) {
return new h(e, t, n, r);
}
static copy(e, t) {
return (e[0] = t[0]), (e[1] = t[1]), (e[2] = t[2]), (e[3] = t[3]), e;
}
static set(e, t, n, r, a) {
return (e[0] = t), (e[1] = n), (e[2] = r), (e[3] = a), e;
}
static add(e, t, n) {
return (
(e[0] = t[0] + n[0]),
(e[1] = t[1] + n[1]),
(e[2] = t[2] + n[2]),
(e[3] = t[3] + n[3]),
e
);
}
static subtract(e, t, n) {
return (
(e[0] = t[0] - n[0]),
(e[1] = t[1] - n[1]),
(e[2] = t[2] - n[2]),
(e[3] = t[3] - n[3]),
e
);
}
static sub(e, t, n) {
return e;
}
static multiply(e, t, n) {
return (
(e[0] = t[0] * n[0]),
(e[1] = t[1] * n[1]),
(e[2] = t[2] * n[2]),
(e[3] = t[3] * n[3]),
e
);
}
static mul(e, t, n) {
return e;
}
static divide(e, t, n) {
return (
(e[0] = t[0] / n[0]),
(e[1] = t[1] / n[1]),
(e[2] = t[2] / n[2]),
(e[3] = t[3] / n[3]),
e
);
}
static div(e, t, n) {
return e;
}
static ceil(e, t) {
return (
(e[0] = Math.ceil(t[0])),
(e[1] = Math.ceil(t[1])),
(e[2] = Math.ceil(t[2])),
(e[3] = Math.ceil(t[3])),
e
);
}
static floor(e, t) {
return (
(e[0] = Math.floor(t[0])),
(e[1] = Math.floor(t[1])),
(e[2] = Math.floor(t[2])),
(e[3] = Math.floor(t[3])),
e
);
}
static min(e, t, n) {
return (
(e[0] = Math.min(t[0], n[0])),
(e[1] = Math.min(t[1], n[1])),
(e[2] = Math.min(t[2], n[2])),
(e[3] = Math.min(t[3], n[3])),
e
);
}
static max(e, t, n) {
return (
(e[0] = Math.max(t[0], n[0])),
(e[1] = Math.max(t[1], n[1])),
(e[2] = Math.max(t[2], n[2])),
(e[3] = Math.max(t[3], n[3])),
e
);
}
static round(e, t) {
return (
(e[0] = Math.round(t[0])),
(e[1] = Math.round(t[1])),
(e[2] = Math.round(t[2])),
(e[3] = Math.round(t[3])),
e
);
}
static scale(e, t, n) {
return (
(e[0] = t[0] * n),
(e[1] = t[1] * n),
(e[2] = t[2] * n),
(e[3] = t[3] * n),
e
);
}
static scaleAndAdd(e, t, n, r) {
return (
(e[0] = t[0] + n[0] * r),
(e[1] = t[1] + n[1] * r),
(e[2] = t[2] + n[2] * r),
(e[3] = t[3] + n[3] * r),
e
);
}
static distance(e, t) {
let n = t[0] - e[0],
r = t[1] - e[1],
a = t[2] - e[2],
s = t[3] - e[3];
return Math.hypot(n, r, a, s);
}
static dist(e, t) {
return 0;
}
static squaredDistance(e, t) {
let n = t[0] - e[0],
r = t[1] - e[1],
a = t[2] - e[2],
s = t[3] - e[3];
return n * n + r * r + a * a + s * s;
}
static sqrDist(e, t) {
return 0;
}
static magnitude(e) {
let t = e[0],
n = e[1],
r = e[2],
a = e[3];
return Math.sqrt(t * t + n * n + r * r + a * a);
}
static mag(e) {
return 0;
}
static length(e) {
return 0;
}
static len(e) {
return 0;
}
static squaredLength(e) {
let t = e[0],
n = e[1],
r = e[2],
a = e[3];
return t * t + n * n + r * r + a * a;
}
static sqrLen(e) {
return 0;
}
static negate(e, t) {
return (
(e[0] = -t[0]), (e[1] = -t[1]), (e[2] = -t[2]), (e[3] = -t[3]), e
);
}
static inverse(e, t) {
return (
(e[0] = 1 / t[0]),
(e[1] = 1 / t[1]),
(e[2] = 1 / t[2]),
(e[3] = 1 / t[3]),
e
);
}
static abs(e, t) {
return (
(e[0] = Math.abs(t[0])),
(e[1] = Math.abs(t[1])),
(e[2] = Math.abs(t[2])),
(e[3] = Math.abs(t[3])),
e
);
}
static normalize(e, t) {
let n = t[0],
r = t[1],
a = t[2],
s = t[3],
i = n * n + r * r + a * a + s * s;
return (
i > 0 && (i = 1 / Math.sqrt(i)),
(e[0] = n * i),
(e[1] = r * i),
(e[2] = a * i),
(e[3] = s * i),
e
);
}
static dot(e, t) {
return e[0] * t[0] + e[1] * t[1] + e[2] * t[2] + e[3] * t[3];
}
static cross(e, t, n, r) {
let a = n[0] * r[1] - n[1] * r[0],
s = n[0] * r[2] - n[2] * r[0],
i = n[0] * r[3] - n[3] * r[0],
c = n[1] * r[2] - n[2] * r[1],
y = n[1] * r[3] - n[3] * r[1],
L = n[2] * r[3] - n[3] * r[2],
k = t[0],
l = t[1],
b = t[2],
M = t[3];
return (
(e[0] = l * L - b * y + M * c),
(e[1] = -(k * L) + b * i - M * s),
(e[2] = k * y - l * i + M * a),
(e[3] = -(k * c) + l * s - b * a),
e
);
}
static lerp(e, t, n, r) {
let a = t[0],
s = t[1],
i = t[2],
c = t[3];
return (
(e[0] = a + r * (n[0] - a)),
(e[1] = s + r * (n[1] - s)),
(e[2] = i + r * (n[2] - i)),
(e[3] = c + r * (n[3] - c)),
e
);
}
static random(e, t) {
t = t || 1;
var n, r, a, s, i, c;
do
(n = Math.random() * 2 - 1),
(r = Math.random() * 2 - 1),
(i = n * n + r * r);
while (i >= 1);
do
(a = Math.random() * 2 - 1),
(s = Math.random() * 2 - 1),
(c = a * a + s * s);
while (c >= 1);
var y = Math.sqrt((1 - i) / c);
return (
(e[0] = t * n),
(e[1] = t * r),
(e[2] = t * a * y),
(e[3] = t * s * y),
e
);
}
static transformMat4(e, t, n) {
let r = t[0],
a = t[1],
s = t[2],
i = t[3];
return (
(e[0] = n[0] * r + n[4] * a + n[8] * s + n[12] * i),
(e[1] = n[1] * r + n[5] * a + n[9] * s + n[13] * i),
(e[2] = n[2] * r + n[6] * a + n[10] * s + n[14] * i),
(e[3] = n[3] * r + n[7] * a + n[11] * s + n[15] * i),
e
);
}
static transformQuat(e, t, n) {
let r = t[0],
a = t[1],
s = t[2],
i = n[0],
c = n[1],
y = n[2],
L = n[3],
k = L * r + c * s - y * a,
l = L * a + y * r - i * s,
b = L * s + i * a - c * r,
M = -i * r - c * a - y * s;
return (
(e[0] = k * L + M * -i + l * -y - b * -c),
(e[1] = l * L + M * -c + b * -i - k * -y),
(e[2] = b * L + M * -y + k * -c - l * -i),
(e[3] = t[3]),
e
);
}
static zero(e) {
return (e[0] = 0), (e[1] = 0), (e[2] = 0), (e[3] = 0), e;
}
static str(e) {
return `Vec4(${e.join(', ')})`;
}
static exactEquals(e, t) {
return e[0] === t[0] && e[1] === t[1] && e[2] === t[2] && e[3] === t[3];
}
static equals(e, t) {
let n = e[0],
r = e[1],
a = e[2],
s = e[3],
i = t[0],
c = t[1],
y = t[2],
L = t[3];
return (
Math.abs(n - i) <= 1e-6 * Math.max(1, Math.abs(n), Math.abs(i)) &&
Math.abs(r - c) <= 1e-6 * Math.max(1, Math.abs(r), Math.abs(c)) &&
Math.abs(a - y) <= 1e-6 * Math.max(1, Math.abs(a), Math.abs(y)) &&
Math.abs(s - L) <= 1e-6 * Math.max(1, Math.abs(s), Math.abs(L))
);
}
};
q.prototype.sub = q.prototype.subtract;
q.prototype.mul = q.prototype.multiply;
q.prototype.div = q.prototype.divide;
q.prototype.dist = q.prototype.distance;
q.prototype.sqrDist = q.prototype.squaredDistance;
q.sub = q.subtract;
q.mul = q.multiply;
q.div = q.divide;
q.dist = q.distance;
q.sqrDist = q.squaredDistance;
q.sqrLen = q.squaredLength;
q.mag = q.magnitude;
q.length = q.magnitude;
q.len = q.magnitude;
var be = q;
var I = class h extends Float32Array {
static BYTE_LENGTH = 4 * Float32Array.BYTES_PER_ELEMENT;
constructor(...e) {
switch (e.length) {
case 4:
super(e);
break;
case 2:
super(e[0], e[1], 4);
break;
case 1: {
let t = e[0];
typeof t == 'number' ? super([t, t, t, t]) : super(t, 0, 4);
break;
}
default:
super(4), (this[3] = 1);
break;
}
}
get x() {
return this[0];
}
set x(e) {
this[0] = e;
}
get y() {
return this[1];
}
set y(e) {
this[1] = e;
}
get z() {
return this[2];
}
set z(e) {
this[2] = e;
}
get w() {
return this[3];
}
set w(e) {
this[3] = e;
}
get magnitude() {
let e = this[0],
t = this[1],
n = this[2],
r = this[3];
return Math.sqrt(e * e + t * t + n * n + r * r);
}
get mag() {
return this.magnitude;
}
get str() {
return h.str(this);
}
copy(e) {
return super.set(e), this;
}
identity() {
return (
(this[0] = 0), (this[1] = 0), (this[2] = 0), (this[3] = 1), this
);
}
multiply(e) {
return h.multiply(this, this, e);
}
mul(e) {
return this;
}
rotateX(e) {
return h.rotateX(this, this, e);
}
rotateY(e) {
return h.rotateY(this, this, e);
}
rotateZ(e) {
return h.rotateZ(this, this, e);
}
invert() {
return h.invert(this, this);
}
scale(e) {
return (
(this[0] *= e),
(this[1] *= e),
(this[2] *= e),
(this[3] *= e),
this
);
}
dot(e) {
return h.dot(this, e);
}
static create() {
return new h();
}
static identity(e) {
return (e[0] = 0), (e[1] = 0), (e[2] = 0), (e[3] = 1), e;
}
static setAxisAngle(e, t, n) {
n = n * 0.5;
let r = Math.sin(n);
return (
(e[0] = r * t[0]),
(e[1] = r * t[1]),
(e[2] = r * t[2]),
(e[3] = Math.cos(n)),
e
);
}
static getAxisAngle(e, t) {
let n = Math.acos(t[3]) * 2,
r = Math.sin(n / 2);
return (
r > 1e-6
? ((e[0] = t[0] / r), (e[1] = t[1] / r), (e[2] = t[2] / r))
: ((e[0] = 1), (e[1] = 0), (e[2] = 0)),
n
);
}
static getAngle(e, t) {
let n = h.dot(e, t);
return Math.acos(2 * n * n - 1);
}
static multiply(e, t, n) {
let r = t[0],
a = t[1],
s = t[2],
i = t[3],
c = n[0],
y = n[1],
L = n[2],
k = n[3];
return (
(e[0] = r * k + i * c + a * L - s * y),
(e[1] = a * k + i * y + s * c - r * L),
(e[2] = s * k + i * L + r * y - a * c),
(e[3] = i * k - r * c - a * y - s * L),
e
);
}
static rotateX(e, t, n) {
n *= 0.5;
let r = t[0],
a = t[1],
s = t[2],
i = t[3],
c = Math.sin(n),
y = Math.cos(n);
return (
(e[0] = r * y + i * c),
(e[1] = a * y + s * c),
(e[2] = s * y - a * c),
(e[3] = i * y - r * c),
e
);
}
static rotateY(e, t, n) {
n *= 0.5;
let r = t[0],
a = t[1],
s = t[2],
i = t[3],
c = Math.sin(n),
y = Math.cos(n);
return (
(e[0] = r * y - s * c),
(e[1] = a * y + i * c),
(e[2] = s * y + r * c),
(e[3] = i * y - a * c),
e
);
}
static rotateZ(e, t, n) {
n *= 0.5;
let r = t[0],
a = t[1],
s = t[2],
i = t[3],
c = Math.sin(n),
y = Math.cos(n);
return (
(e[0] = r * y + a * c),
(e[1] = a * y - r * c),
(e[2] = s * y + i * c),
(e[3] = i * y - s * c),
e
);
}
static calculateW(e, t) {
let n = t[0],
r = t[1],
a = t[2];
return (
(e[0] = n),
(e[1] = r),
(e[2] = a),
(e[3] = Math.sqrt(Math.abs(1 - n * n - r * r - a * a))),
e
);
}
static exp(e, t) {
let n = t[0],
r = t[1],
a = t[2],
s = t[3],
i = Math.sqrt(n * n + r * r + a * a),
c = Math.exp(s),
y = i > 0 ? (c * Math.sin(i)) / i : 0;
return (
(e[0] = n * y),
(e[1] = r * y),
(e[2] = a * y),
(e[3] = c * Math.cos(i)),
e
);
}
static ln(e, t) {
let n = t[0],
r = t[1],
a = t[2],
s = t[3],
i = Math.sqrt(n * n + r * r + a * a),
c = i > 0 ? Math.atan2(i, s) / i : 0;
return (
(e[0] = n * c),
(e[1] = r * c),
(e[2] = a * c),
(e[3] = 0.5 * Math.log(n * n + r * r + a * a + s * s)),
e
);
}
static pow(e, t, n) {
return h.ln(e, t), h.scale(e, e, n), h.exp(e, e), e;
}
static slerp(e, t, n, r) {
let a = t[0],
s = t[1],
i = t[2],
c = t[3],
y = n[0],
L = n[1],
k = n[2],
l = n[3],
b,
M,
d = a * y + s * L + i * k + c * l;
if (
(d < 0 && ((d = -d), (y = -y), (L = -L), (k = -k), (l = -l)),
1 - d > 1e-6)
) {
let m = Math.acos(d),
o = Math.sin(m);
(b = Math.sin((1 - r) * m) / o), (M = Math.sin(r * m) / o);
} else (b = 1 - r), (M = r);
return (
(e[0] = b * a + M * y),
(e[1] = b * s + M * L),
(e[2] = b * i + M * k),
(e[3] = b * c + M * l),
e
);
}
static random(e) {
let t = Math.random(),
n = Math.random(),
r = Math.random(),
a = Math.sqrt(1 - t),
s = Math.sqrt(t);
return (
(e[0] = a * Math.sin(2 * Math.PI * n)),
(e[1] = a * Math.cos(2 * Math.PI * n)),
(e[2] = s * Math.sin(2 * Math.PI * r)),
(e[3] = s * Math.cos(2 * Math.PI * r)),
e
);
}
static invert(e, t) {
let n = t[0],
r = t[1],
a = t[2],
s = t[3],
i = n * n + r * r + a * a + s * s,
c = i ? 1 / i : 0;
return (
(e[0] = -n * c),
(e[1] = -r * c),
(e[2] = -a * c),
(e[3] = s * c),
e
);
}
static conjugate(e, t) {
return (
(e[0] = -t[0]), (e[1] = -t[1]), (e[2] = -t[2]), (e[3] = t[3]), e
);
}
static fromMat3(e, t) {
let n = t[0] + t[4] + t[8],
r;
if (n > 0)
(r = Math.sqrt(n + 1)),
(e[3] = 0.5 * r),
(r = 0.5 / r),
(e[0] = (t[5] - t[7]) * r),
(e[1] = (t[6] - t[2]) * r),
(e[2] = (t[1] - t[3]) * r);
else {
let a = 0;
t[4] > t[0] && (a = 1), t[8] > t[a * 3 + a] && (a = 2);
let s = (a + 1) % 3,
i = (a + 2) % 3;
(r = Math.sqrt(t[a * 3 + a] - t[s * 3 + s] - t[i * 3 + i] + 1)),
(e[a] = 0.5 * r),
(r = 0.5 / r),
(e[3] = (t[s * 3 + i] - t[i * 3 + s]) * r),
(e[s] = (t[s * 3 + a] + t[a * 3 + s]) * r),
(e[i] = (t[i * 3 + a] + t[a * 3 + i]) * r);
}
return e;
}
static fromEuler(e, t, n, r, a = u) {
let s = (0.5 * Math.PI) / 180;
(t *= s), (n *= s), (r *= s);
let i = Math.sin(t),
c = Math.cos(t),
y = Math.sin(n),
L = Math.cos(n),
k = Math.sin(r),
l = Math.cos(r);
switch (a) {
case 'xyz':
(e[0] = i * L * l + c * y * k),
(e[1] = c * y * l - i * L * k),
(e[2] = c * L * k + i * y * l),
(e[3] = c * L * l - i * y * k);
break;
case 'xzy':
(e[0] = i * L * l - c * y * k),
(e[1] = c * y * l - i * L * k),
(e[2] = c * L * k + i * y * l),
(e[3] = c * L * l + i * y * k);
break;
case 'yxz':
(e[0] = i * L * l + c * y * k),
(e[1] = c * y * l - i * L * k),
(e[2] = c * L * k - i * y * l),
(e[3] = c * L * l + i * y * k);
break;
case 'yzx':
(e[0] = i * L * l + c * y * k),
(e[1] = c * y * l + i * L * k),
(e[2] = c * L * k - i * y * l),
(e[3] = c * L * l - i * y * k);
break;
case 'zxy':
(e[0] = i * L * l - c * y * k),
(e[1] = c * y * l + i * L * k),
(e[2] = c * L * k + i * y * l),
(e[3] = c * L * l - i * y * k);
break;
case 'zyx':
(e[0] = i * L * l - c * y * k),
(e[1] = c * y * l + i * L * k),
(e[2] = c * L * k - i * y * l),
(e[3] = c * L * l + i * y * k);
break;
default:
throw new Error('Unknown angle order ' + a);
}
return e;
}
static str(e) {
return `Quat(${e.join(', ')})`;
}
static clone(e) {
return new h(e);
}
static fromValues(e, t, n, r) {
return new h(e, t, n, r);
}
static copy(e, t) {
return (
(e[0] = t[0]), (e[1] = t[1]), (e[2] = t[2]), (e[3] = t[3]), e
);
}
static set(e, t, n, r, a) {
return e;
}
static add(e, t, n) {
return e;
}
static mul(e, t, n) {
return e;
}
static scale(e, t, n) {
return (
(e[0] = t[0] * n),
(e[1] = t[1] * n),
(e[2] = t[2] * n),
(e[3] = t[3] * n),
e
);
}
static dot(e, t) {
return e[0] * t[0] + e[1] * t[1] + e[2] * t[2] + e[3] * t[3];
}
static lerp(e, t, n, r) {
return e;
}
static magnitude(e) {
return 0;
}
static mag(e) {
return 0;
}
static length(e) {
return 0;
}
static len(e) {
return 0;
}
static squaredLength(e) {
return 0;
}
static sqrLen(e) {
return 0;
}
static normalize(e, t) {
return e;
}
static exactEquals(e, t) {
return !1;
}
static equals(e, t) {
return !1;
}
static rotationTo(e, t, n) {
let r = A.dot(t, n);
return r < -0.999999
? (A.cross(H, de, t),
A.mag(H) < 1e-6 && A.cross(H, he, t),
A.normalize(H, H),
h.setAxisAngle(e, H, Math.PI),
e)
: r > 0.999999
? ((e[0] = 0), (e[1] = 0), (e[2] = 0), (e[3] = 1), e)
: (A.cross(H, t, n),
(e[0] = H[0]),
(e[1] = H[1]),
(e[2] = H[2]),
(e[3] = 1 + r),
h.normalize(e, e));
}
static sqlerp(e, t, n, r, a, s) {
return (
h.slerp(re, t, a, s),
h.slerp(ae, n, r, s),
h.slerp(e, re, ae, 2 * s * (1 - s)),
e
);
}
static setAxes(e, t, n, r) {
return (
(G[0] = n[0]),
(G[3] = n[1]),
(G[6] = n[2]),
(G[1] = r[0]),
(G[4] = r[1]),
(G[7] = r[2]),
(G[2] = -t[0]),
(G[5] = -t[1]),
(G[8] = -t[2]),
h.normalize(e, h.fromMat3(e, G))
);
}
},
re = new Float32Array(4),
ae = new Float32Array(4),
G = new Float32Array(9),
H = new Float32Array(3),
de = new Float32Array([1, 0, 0]),
he = new Float32Array([0, 1, 0]);
I.set = q.set;
I.add = q.add;
I.lerp = q.lerp;
I.normalize = q.normalize;
I.squaredLength = q.squaredLength;
I.sqrLen = q.squaredLength;
I.exactEquals = q.exactEquals;
I.equals = q.equals;
I.magnitude = q.magnitude;
I.prototype.mul = I.prototype.multiply;
I.mul = I.multiply;
I.mag = I.magnitude;
I.length = I.magnitude;
I.len = I.magnitude;
var me = I;
var P = class h extends Float32Array {
static BYTE_LENGTH = 8 * Float32Array.BYTES_PER_ELEMENT;
constructor(...e) {
switch (e.length) {
case 8:
super(e);
break;
case 2:
super(e[0], e[1], 8);
break;
case 1: {
let t = e[0];
typeof t == 'number'
? super([t, t, t, t, t, t, t, t])
: super(t, 0, 8);
break;
}
default:
super(8), (this[3] = 1);
break;
}
}
get str() {
return h.str(this);
}
copy(e) {
return super.set(e), this;
}
static create() {
return new h();
}
static clone(e) {
return new h(e);
}
static fromValues(e, t, n, r, a, s, i, c) {
return new h(e, t, n, r, a, s, i, c);
}
static fromRotationTranslationValues(e, t, n, r, a, s, i) {
let c = a * 0.5,
y = s * 0.5,
L = i * 0.5;
return new h(
e,
t,
n,
r,
c * r + y * n - L * t,
y * r + L * e - c * n,
L * r + c * t - y * e,
-c * e - y * t - L * n,
);
}
static fromRotationTranslation(e, t, n) {
let r = n[0] * 0.5,
a = n[1] * 0.5,
s = n[2] * 0.5,
i = t[0],
c = t[1],
y = t[2],
L = t[3];
return (
(e[0] = i),
(e[1] = c),
(e[2] = y),
(e[3] = L),
(e[4] = r * L + a * y - s * c),
(e[5] = a * L + s * i - r * y),
(e[6] = s * L + r * c - a * i),
(e[7] = -r * i - a * c - s * y),
e
);
}
static fromTranslation(e, t) {
return (
(e[0] = 0),
(e[1] = 0),
(e[2] = 0),
(e[3] = 1),
(e[4] = t[0] * 0.5),
(e[5] = t[1] * 0.5),
(e[6] = t[2] * 0.5),
(e[7] = 0),
e
);
}
static fromRotation(e, t) {
return (
(e[0] = t[0]),
(e[1] = t[1]),
(e[2] = t[2]),
(e[3] = t[3]),
(e[4] = 0),
(e[5] = 0),
(e[6] = 0),
(e[7] = 0),
e
);
}
static fromMat4(e, t) {
return (
O.getRotation(se, t),
O.getTranslation(ie, t),
h.fromRotationTranslation(e, se, ie)
);
}
static copy(e, t) {
return (
(e[0] = t[0]),
(e[1] = t[1]),
(e[2] = t[2]),
(e[3] = t[3]),
(e[4] = t[4]),
(e[5] = t[5]),
(e[6] = t[6]),
(e[7] = t[7]),
e
);
}
static identity(e) {
return (
(e[0] = 0),
(e[1] = 0),
(e[2] = 0),
(e[3] = 1),
(e[4] = 0),
(e[5] = 0),
(e[6] = 0),
(e[7] = 0),
e
);
}
static set(e, t, n, r, a, s, i, c, y) {
return (
(e[0] = t),
(e[1] = n),
(e[2] = r),
(e[3] = a),
(e[4] = s),
(e[5] = i),
(e[6] = c),
(e[7] = y),
e
);
}
static getReal(e, t) {
return (
(e[0] = t[0]), (e[1] = t[1]), (e[2] = t[2]), (e[3] = t[3]), e
);
}
static getDual(e, t) {
return (
(e[0] = t[4]), (e[1] = t[5]), (e[2] = t[6]), (e[3] = t[7]), e
);
}
static setReal(e, t) {
return (
(e[0] = t[0]), (e[1] = t[1]), (e[2] = t[2]), (e[3] = t[3]), e
);
}
static setDual(e, t) {
return (
(e[4] = t[0]), (e[5] = t[1]), (e[6] = t[2]), (e[7] = t[3]), e
);
}
static getTranslation(e, t) {
let n = t[4],
r = t[5],
a = t[6],
s = t[7],
i = -t[0],
c = -t[1],
y = -t[2],
L = t[3];
return (
(e[0] = (n * L + s * i + r * y - a * c) * 2),
(e[1] = (r * L + s * c + a * i - n * y) * 2),
(e[2] = (a * L + s * y + n * c - r * i) * 2),
e
);
}
static translate(e, t, n) {
let r = t[0],
a = t[1],
s = t[2],
i = t[3],
c = n[0] * 0.5,
y = n[1] * 0.5,
L = n[2] * 0.5,
k = t[4],
l = t[5],
b = t[6],
M = t[7];
return (
(e[0] = r),
(e[1] = a),
(e[2] = s),
(e[3] = i),
(e[4] = i * c + a * L - s * y + k),
(e[5] = i * y + s * c - r * L + l),
(e[6] = i * L + r * y - a * c + b),
(e[7] = -r * c - a * y - s * L + M),
e
);
}
static rotateX(e, t, n) {
let r = -t[0],
a = -t[1],
s = -t[2],
i = t[3],
c = t[4],
y = t[5],
L = t[6],
k = t[7],
l = c * i + k * r + y * s - L * a,
b = y * i + k * a + L * r - c * s,
M = L * i + k * s + c * a - y * r,
d = k * i - c * r - y * a - L * s;
return (
I.rotateX(e, t, n),
(r = e[0]),
(a = e[1]),
(s = e[2]),
(i = e[3]),
(e[4] = l * i + d * r + b * s - M * a),
(e[5] = b * i + d * a + M * r - l * s),
(e[6] = M * i + d * s + l * a - b * r),
(e[7] = d * i - l * r - b * a - M * s),
e
);
}
static rotateY(e, t, n) {
let r = -t[0],
a = -t[1],
s = -t[2],
i = t[3],
c = t[4],
y = t[5],
L = t[6],
k = t[7],
l = c * i + k * r + y * s - L * a,
b = y * i + k * a + L * r - c * s,
M = L * i + k * s + c * a - y * r,
d = k * i - c * r - y * a - L * s;
return (
I.rotateY(e, t, n),
(r = e[0]),
(a = e[1]),
(s = e[2]),
(i = e[3]),
(e[4] = l * i + d * r + b * s - M * a),
(e[5] = b * i + d * a + M * r - l * s),
(e[6] = M * i + d * s + l * a - b * r),
(e[7] = d * i - l * r - b * a - M * s),
e
);
}
static rotateZ(e, t, n) {
let r = -t[0],
a = -t[1],
s = -t[2],
i = t[3],
c = t[4],
y = t[5],
L = t[6],
k = t[7],
l = c * i + k * r + y * s - L * a,
b = y * i + k * a + L * r - c * s,
M = L * i + k * s + c * a - y * r,
d = k * i - c * r - y * a - L * s;
return (
I.rotateZ(e, t, n),
(r = e[0]),
(a = e[1]),
(s = e[2]),
(i = e[3]),
(e[4] = l * i + d * r + b * s - M * a),
(e[5] = b * i + d * a + M * r - l * s),
(e[6] = M * i + d * s + l * a - b * r),
(e[7] = d * i - l * r - b * a - M * s),
e
);
}
static rotateByQuatAppend(e, t, n) {
let r = n[0],
a = n[1],
s = n[2],
i = n[3],
c = t[0],
y = t[1],
L = t[2],
k = t[3];
return (
(e[0] = c * i + k * r + y * s - L * a),
(e[1] = y * i + k * a + L * r - c * s),
(e[2] = L * i + k * s + c * a - y * r),
(e[3] = k * i - c * r - y * a - L * s),
(c = t[4]),
(y = t[5]),
(L = t[6]),
(k = t[7]),
(e[4] = c * i + k * r + y * s - L * a),
(e[5] = y * i + k * a + L * r - c * s),
(e[6] = L * i + k * s + c * a - y * r),
(e[7] = k * i - c * r - y * a - L * s),
e
);
}
static rotateByQuatPrepend(e, t, n) {
let r = t[0],
a = t[1],
s = t[2],
i = t[3],
c = n[0],
y = n[1],
L = n[2],
k = n[3];
return (
(e[0] = r * k + i * c + a * L - s * y),
(e[1] = a * k + i * y + s * c - r * L),
(e[2] = s * k + i * L + r * y - a * c),
(e[3] = i * k - r * c - a * y - s * L),
(c = n[4]),
(y = n[5]),
(L = n[6]),
(k = n[7]),
(e[4] = r * k + i * c + a * L - s * y),
(e[5] = a * k + i * y + s * c - r * L),
(e[6] = s * k + i * L + r * y - a * c),
(e[7] = i * k - r * c - a * y - s * L),
e
);
}
static rotateAroundAxis(e, t, n, r) {
if (Math.abs(r) < 1e-6) return h.copy(e, t);
let a = Math.sqrt(n[0] * n[0] + n[1] * n[1] + n[2] * n[2]);
r = r * 0.5;
let s = Math.sin(r),
i = (s * n[0]) / a,
c = (s * n[1]) / a,
y = (s * n[2]) / a,
L = Math.cos(r),
k = t[0],
l = t[1],
b = t[2],
M = t[3];
(e[0] = k * L + M * i + l * y - b * c),
(e[1] = l * L + M * c + b * i - k * y),
(e[2] = b * L + M * y + k * c - l * i),
(e[3] = M * L - k * i - l * c - b * y);
let d = t[4],
m = t[5],
o = t[6],
x = t[7];
return (
(e[4] = d * L + x * i + m * y - o * c),
(e[5] = m * L + x * c + o * i - d * y),
(e[6] = o * L + x * y + d * c - m * i),
(e[7] = x * L - d * i - m * c - o * y),
e
);
}
static add(e, t, n) {
return (
(e[0] = t[0] + n[0]),
(e[1] = t[1] + n[1]),
(e[2] = t[2] + n[2]),
(e[3] = t[3] + n[3]),
(e[4] = t[4] + n[4]),
(e[5] = t[5] + n[5]),
(e[6] = t[6] + n[6]),
(e[7] = t[7] + n[7]),
e
);
}
static multiply(e, t, n) {
let r = t[0],
a = t[1],
s = t[2],
i = t[3],
c = n[4],
y = n[5],
L = n[6],
k = n[7],
l = t[4],
b = t[5],
M = t[6],
d = t[7],
m = n[0],
o = n[1],
x = n[2],
z = n[3];
return (
(e[0] = r * z + i * m + a * x - s * o),
(e[1] = a * z + i * o + s * m - r * x),
(e[2] = s * z + i * x + r * o - a * m),
(e[3] = i * z - r * m - a * o - s * x),
(e[4] =
r * k +
i * c +
a * L -
s * y +
l * z +
d * m +
b * x -
M * o),
(e[5] =
a * k +
i * y +
s * c -
r * L +
b * z +
d * o +
M * m -
l * x),
(e[6] =
s * k +
i * L +
r * y -
a * c +
M * z +
d * x +
l * o -
b * m),
(e[7] =
i * k -
r * c -
a * y -
s * L +
d * z -
l * m -
b * o -
M * x),
e
);
}
static mul(e, t, n) {
return e;
}
static scale(e, t, n) {
return (
(e[0] = t[0] * n),
(e[1] = t[1] * n),
(e[2] = t[2] * n),
(e[3] = t[3] * n),
(e[4] = t[4] * n),
(e[5] = t[5] * n),
(e[6] = t[6] * n),
(e[7] = t[7] * n),
e
);
}
static dot(e, t) {
return 0;
}
static lerp(e, t, n, r) {
let a = 1 - r;
return (
h.dot(t, n) < 0 && (r = -r),
(e[0] = t[0] * a + n[0] * r),
(e[1] = t[1] * a + n[1] * r),
(e[2] = t[2] * a + n[2] * r),
(e[3] = t[3] * a + n[3] * r),
(e[4] = t[4] * a + n[4] * r),
(e[5] = t[5] * a + n[5] * r),
(e[6] = t[6] * a + n[6] * r),
(e[7] = t[7] * a + n[7] * r),
e
);
}
static invert(e, t) {
let n = h.squaredLength(t);
return (
(e[0] = -t[0] / n),
(e[1] = -t[1] / n),
(e[2] = -t[2] / n),
(e[3] = t[3] / n),
(e[4] = -t[4] / n),
(e[5] = -t[5] / n),
(e[6] = -t[6] / n),
(e[7] = t[7] / n),
e
);
}
static conjugate(e, t) {
return (
(e[0] = -t[0]),
(e[1] = -t[1]),
(e[2] = -t[2]),
(e[3] = t[3]),
(e[4] = -t[4]),
(e[5] = -t[5]),
(e[6] = -t[6]),
(e[7] = t[7]),
e
);
}
static magnitude(e) {
return 0;
}
static mag(e) {
return 0;
}
static length(e) {
return 0;
}
static len(e) {
return 0;
}
static squaredLength(e) {
return 0;
}
static sqrLen(e) {
return 0;
}
static normalize(e, t) {
let n = h.squaredLength(t);
if (n > 0) {
n = Math.sqrt(n);
let r = t[0] / n,
a = t[1] / n,
s = t[2] / n,
i = t[3] / n,
c = t[4],
y = t[5],
L = t[6],
k = t[7],
l = r * c + a * y + s * L + i * k;
(e[0] = r),
(e[1] = a),
(e[2] = s),
(e[3] = i),
(e[4] = (c - r * l) / n),
(e[5] = (y - a * l) / n),
(e[6] = (L - s * l) / n),
(e[7] = (k - i * l) / n);
}
return e;
}
static str(e) {
return `Quat2(${e.join(', ')})`;
}
static exactEquals(e, t) {
return (
e[0] === t[0] &&
e[1] === t[1] &&
e[2] === t[2] &&
e[3] === t[3] &&
e[4] === t[4] &&
e[5] === t[5] &&
e[6] === t[6] &&
e[7] === t[7]
);
}
static equals(e, t) {
let n = e[0],
r = e[1],
a = e[2],
s = e[3],
i = e[4],
c = e[5],
y = e[6],
L = e[7],
k = t[0],
l = t[1],
b = t[2],
M = t[3],
d = t[4],
m = t[5],
o = t[6],
x = t[7];
return (
Math.abs(n - k) <=
1e-6 * Math.max(1, Math.abs(n), Math.abs(k)) &&
Math.abs(r - l) <=
1e-6 * Math.max(1, Math.abs(r), Math.abs(l)) &&
Math.abs(a - b) <=
1e-6 * Math.max(1, Math.abs(a), Math.abs(b)) &&
Math.abs(s - M) <=
1e-6 * Math.max(1, Math.abs(s), Math.abs(M)) &&
Math.abs(i - d) <=
1e-6 * Math.max(1, Math.abs(i), Math.abs(d)) &&
Math.abs(c - m) <=
1e-6 * Math.max(1, Math.abs(c), Math.abs(m)) &&
Math.abs(y - o) <=
1e-6 * Math.max(1, Math.abs(y), Math.abs(o)) &&
Math.abs(L - x) <= 1e-6 * Math.max(1, Math.abs(L), Math.abs(x))
);
}
},
se = new Float32Array(4),
ie = new Float32Array(3);
P.dot = I.dot;
P.squaredLength = I.squaredLength;
P.sqrLen = I.squaredLength;
P.mag = I.magnitude;
P.length = I.magnitude;
P.len = I.magnitude;
P.mul = P.multiply;
var oe = P;
var S = class h extends Float32Array {
static BYTE_LENGTH = 2 * Float32Array.BYTES_PER_ELEMENT;
constructor(...e) {
switch (e.length) {
case 2: {
let t = e[0];
typeof t == 'number' ? super([t, e[1]]) : super(t, e[1], 2);
break;
}
case 1: {
let t = e[0];
typeof t == 'number' ? super([t, t]) : super(t, 0, 2);
break;
}
default:
super(2);
break;
}
}
get x() {
return this[0];
}
set x(e) {
this[0] = e;
}
get y() {
return this[1];
}
set y(e) {
this[1] = e;
}
get r() {
return this[0];
}
set r(e) {
this[0] = e;
}
get g() {
return this[1];
}
set g(e) {
this[1] = e;
}
get magnitude() {
return Math.hypot(this[0], this[1]);
}
get mag() {
return this.magnitude;
}
get squaredMagnitude() {
let e = this[0],
t = this[1];
return e * e + t * t;
}
get sqrMag() {
return this.squaredMagnitude;
}
get str() {
return h.str(this);
}
copy(e) {
return this.set(e), this;
}
add(e) {
return (this[0] += e[0]), (this[1] += e[1]), this;
}
subtract(e) {
return (this[0] -= e[0]), (this[1] -= e[1]), this;
}
sub(e) {
return this;
}
multiply(e) {
return (this[0] *= e[0]), (this[1] *= e[1]), this;
}
mul(e) {
return this;
}
divide(e) {
return (this[0] /= e[0]), (this[1] /= e[1]), this;
}
div(e) {
return this;
}
scale(e) {
return (this[0] *= e), (this[1] *= e), this;
}
scaleAndAdd(e, t) {
return (this[0] += e[0] * t), (this[1] += e[1] * t), this;
}
distance(e) {
return h.distance(this, e);
}
dist(e) {
return 0;
}
squaredDistance(e) {
return h.squaredDistance(this, e);
}
sqrDist(e) {
return 0;
}
negate() {
return (this[0] *= -1), (this[1] *= -1), this;
}
invert() {
return (this[0] = 1 / this[0]), (this[1] = 1 / this[1]), this;
}
abs() {
return (
(this[0] = Math.abs(this[0])), (this[1] = Math.abs(this[1])), this
);
}
dot(e) {
return this[0] * e[0] + this[1] * e[1];
}
normalize() {
return h.normalize(this, this);
}
static create() {
return new h();
}
static clone(e) {
return new h(e);
}
static fromValues(e, t) {
return new h(e, t);
}
static copy(e, t) {
return (e[0] = t[0]), (e[1] = t[1]), e;
}
static set(e, t, n) {
return (e[0] = t), (e[1] = n), e;
}
static add(e, t, n) {
return (e[0] = t[0] + n[0]), (e[1] = t[1] + n[1]), e;
}
static subtract(e, t, n) {
return (e[0] = t[0] - n[0]), (e[1] = t[1] - n[1]), e;
}
static sub(e, t, n) {
return [0, 0];
}
static multiply(e, t, n) {
return (e[0] = t[0] * n[0]), (e[1] = t[1] * n[1]), e;
}
static mul(e, t, n) {
return [0, 0];
}
static divide(e, t, n) {
return (e[0] = t[0] / n[0]), (e[1] = t[1] / n[1]), e;
}
static div(e, t, n) {
return [0, 0];
}
static ceil(e, t) {
return (e[0] = Math.ceil(t[0])), (e[1] = Math.ceil(t[1])), e;
}
static floor(e, t) {
return (e[0] = Math.floor(t[0])), (e[1] = Math.floor(t[1])), e;
}
static min(e, t, n) {
return (e[0] = Math.min(t[0], n[0])), (e[1] = Math.min(t[1], n[1])), e;
}
static max(e, t, n) {
return (e[0] = Math.max(t[0], n[0])), (e[1] = Math.max(t[1], n[1])), e;
}
static round(e, t) {
return (e[0] = Math.round(t[0])), (e[1] = Math.round(t[1])), e;
}
static scale(e, t, n) {
return (e[0] = t[0] * n), (e[1] = t[1] * n), e;
}
static scaleAndAdd(e, t, n, r) {
return (e[0] = t[0] + n[0] * r), (e[1] = t[1] + n[1] * r), e;
}
static distance(e, t) {
return Math.hypot(t[0] - e[0], t[1] - e[1]);
}
static dist(e, t) {
return 0;
}
static squaredDistance(e, t) {
let n = t[0] - e[0],
r = t[1] - e[1];
return n * n + r * r;
}
static sqrDist(e, t) {
return 0;
}
static magnitude(e) {
let t = e[0],
n = e[1];
return Math.sqrt(t * t + n * n);
}
static mag(e) {
return 0;
}
static length(e) {
return 0;
}
static len(e) {
return 0;
}
static squaredLength(e) {
let t = e[0],
n = e[1];
return t * t + n * n;
}
static sqrLen(e, t) {
return 0;
}
static negate(e, t) {
return (e[0] = -t[0]), (e[1] = -t[1]), e;
}
static inverse(e, t) {
return (e[0] = 1 / t[0]), (e[1] = 1 / t[1]), e;
}
static abs(e, t) {
return (e[0] = Math.abs(t[0])), (e[1] = Math.abs(t[1])), e;
}
static normalize(e, t) {
let n = t[0],
r = t[1],
a = n * n + r * r;
return (
a > 0 && (a = 1 / Math.sqrt(a)),
(e[0] = t[0] * a),
(e[1] = t[1] * a),
e
);
}
static dot(e, t) {
return e[0] * t[0] + e[1] * t[1];
}
static cross(e, t, n) {
let r = t[0] * n[1] - t[1] * n[0];
return (e[0] = e[1] = 0), (e[2] = r), e;
}
static lerp(e, t, n, r) {
let a = t[0],
s = t[1];
return (e[0] = a + r * (n[0] - a)), (e[1] = s + r * (n[1] - s)), e;
}
static transformMat2(e, t, n) {
let r = t[0],
a = t[1];
return (e[0] = n[0] * r + n[2] * a), (e[1] = n[1] * r + n[3] * a), e;
}
static transformMat2d(e, t, n) {
let r = t[0],
a = t[1];
return (
(e[0] = n[0] * r + n[2] * a + n[4]),
(e[1] = n[1] * r + n[3] * a + n[5]),
e
);
}
static transformMat3(e, t, n) {
let r = t[0],
a = t[1];
return (
(e[0] = n[0] * r + n[3] * a + n[6]),
(e[1] = n[1] * r + n[4] * a + n[7]),
e
);
}
static transformMat4(e, t, n) {
let r = t[0],
a = t[1];
return (
(e[0] = n[0] * r + n[4] * a + n[12]),
(e[1] = n[1] * r + n[5] * a + n[13]),
e
);
}
static rotate(e, t, n, r) {
let a = t[0] - n[0],
s = t[1] - n[1],
i = Math.sin(r),
c = Math.cos(r);
return (e[0] = a * c - s * i + n[0]), (e[1] = a * i + s * c + n[1]), e;
}
static angle(e, t) {
let n = e[0],
r = e[1],
a = t[0],
s = t[1],
i = Math.sqrt(n * n + r * r) * Math.sqrt(a * a + s * s),
c = i && (n * a + r * s) / i;
return Math.acos(Math.min(Math.max(c, -1), 1));
}
static zero(e) {
return (e[0] = 0), (e[1] = 0), e;
}
static exactEquals(e, t) {
return e[0] === t[0] && e[1] === t[1];
}
static equals(e, t) {
let n = e[0],
r = e[1],
a = t[0],
s = t[1];
return (
Math.abs(n - a) <= 1e-6 * Math.max(1, Math.abs(n), Math.abs(a)) &&
Math.abs(r - s) <= 1e-6 * Math.max(1, Math.abs(r), Math.abs(s))
);
}
static str(e) {
return `Vec2(${e.join(', ')})`;
}
};
S.prototype.sub = S.prototype.subtract;
S.prototype.mul = S.prototype.multiply;
S.prototype.div = S.prototype.divide;
S.prototype.dist = S.prototype.distance;
S.prototype.sqrDist = S.prototype.squaredDistance;
S.sub = S.subtract;
S.mul = S.multiply;
S.div = S.divide;
S.dist = S.distance;
S.sqrDist = S.squaredDistance;
S.sqrLen = S.squaredLength;
S.mag = S.magnitude;
S.length = S.magnitude;
S.len = S.magnitude;
var xe = S;
var Re = [
'xx',
'xy',
'yx',
'yy',
'xxx',
'xxy',
'xyx',
'xyy',
'yxx',
'yxy',
'yyx',
'yyy',
'xxxx',
'xxxy',
'xxyx',
'xxyy',
'xyxx',
'xyxy',
'xyyx',
'xyyy',
'yxxx',
'yxxy',
'yxyx',
'yxyy',
'yyxx',
'yyxy',
'yyyx',
'yyyy',
'rr',
'rg',
'gr',
'gg',
'rrr',
'rrg',
'rgr',
'rgg',
'grr',
'grg',
'ggr',
'ggg',
'rrrr',
'rrrg',
'rrgr',
'rrgg',
'rgrr',
'rgrg',
'rggr',
'rggg',
'grrr',
'grrg',
'grgr',
'grgg',
'ggrr',
'ggrg',
'gggr',
'gggg',
],
Ve = [
'xz',
'yz',
'zx',
'zy',
'zz',
'xxz',
'xyz',
'xzx',
'xzy',
'xzz',
'yxz',
'yyz',
'yzx',
'yzy',
'yzz',
'zxx',
'zxy',
'zxz',
'zyx',
'zyy',
'zyz',
'zzx',
'zzy',
'zzz',
'xxxz',
'xxyz',
'xxzx',
'xxzy',
'xxzz',
'xyxz',
'xyyz',
'xyzx',
'xyzy',
'xyzz',
'xzxx',
'xzxy',
'xzxz',
'xzyx',
'xzyy',
'xzyz',
'xzzx',
'xzzy',
'xzzz',
'yxxz',
'yxyz',
'yxzx',
'yxzy',
'yxzz',
'yyxz',
'yyyz',
'yyzx',
'yyzy',
'yyzz',
'yzxx',
'yzxy',
'yzxz',
'yzyx',
'yzyy',
'yzyz',
'yzzx',
'yzzy',
'yzzz',
'zxxx',
'zxxy',
'zxxz',
'zxyx',
'zxyy',
'zxyz',
'zxzx',
'zxzy',
'zxzz',
'zyxx',
'zyxy',
'zyxz',
'zyyx',
'zyyy',
'zyyz',
'zyzx',
'zyzy',
'zyzz',
'zzxx',
'zzxy',
'zzxz',
'zzyx',
'zzyy',
'zzyz',
'zzzx',
'zzzy',
'zzzz',
'rb',
'gb',
'br',
'bg',
'bb',
'rrb',
'rgb',
'rbr',
'rbg',
'rbb',
'grb',
'ggb',
'gbr',
'gbg',
'gbb',
'brr',
'brg',
'brb',
'bgr',
'bgg',
'bgb',
'bbr',
'bbg',
'bbb',
'rrrb',
'rrgb',
'rrbr',
'rrbg',
'rrbb',
'rgrb',
'rggb',
'rgbr',
'rgbg',
'rgbb',
'rbrr',
'rbrg',
'rbrb',
'rbgr',
'rbgg',
'rbgb',
'rbbr',
'rbbg',
'rbbb',
'grrb',
'grgb',
'grbr',
'grbg',
'grbb',
'ggrb',
'gggb',
'ggbr',
'ggbg',
'ggbb',
'gbrr',
'gbrg',
'gbrb',
'gbgr',
'gbgg',
'gbgb',
'gbbr',
'gbbg',
'gbbb',
'brrr',
'brrg',
'brrb',
'brgr',
'brgg',
'brgb',
'brbr',
'brbg',
'brbb',
'bgrr',
'bgrg',
'bgrb',
'bggr',
'bggg',
'bggb',
'bgbr',
'bgbg',
'bgbb',
'bbrr',
'bbrg',
'bbrb',
'bbgr',
'bbgg',
'bbgb',
'bbbr',
'bbbg',
'bbbb',
],
ge = [
'xw',
'yw',
'zw',
'wx',
'wy',
'wz',
'ww',
'xxw',
'xyw',
'xzw',
'xwx',
'xwy',
'xwz',
'xww',
'yxw',
'yyw',
'yzw',
'ywx',
'ywy',
'ywz',
'yww',
'zxw',
'zyw',
'zzw',
'zwx',
'zwy',
'zwz',
'zww',
'wxx',
'wxy',
'wxz',
'wxw',
'wyx',
'wyy',
'wyz',
'wyw',
'wzx',
'wzy',
'wzz',
'wzw',
'wwx',
'wwy',
'wwz',
'www',
'xxxw',
'xxyw',
'xxzw',
'xxwx',
'xxwy',
'xxwz',
'xxww',
'xyxw',
'xyyw',
'xyzw',
'xywx',
'xywy',
'xywz',
'xyww',
'xzxw',
'xzyw',
'xzzw',
'xzwx',
'xzwy',
'xzwz',
'xzww',
'xwxx',
'xwxy',
'xwxz',
'xwxw',
'xwyx',
'xwyy',
'xwyz',
'xwyw',
'xwzx',
'xwzy',
'xwzz',
'xwzw',
'xwwx',
'xwwy',
'xwwz',
'xwww',
'yxxw',
'yxyw',
'yxzw',
'yxwx',
'yxwy',
'yxwz',
'yxww',
'yyxw',
'yyyw',
'yyzw',
'yywx',
'yywy',
'yywz',
'yyww',
'yzxw',
'yzyw',
'yzzw',
'yzwx',
'yzwy',
'yzwz',
'yzww',
'ywxx',
'ywxy',
'ywxz',
'ywxw',
'ywyx',
'ywyy',
'ywyz',
'ywyw',
'ywzx',
'ywzy',
'ywzz',
'ywzw',
'ywwx',
'ywwy',
'ywwz',
'ywww',
'zxxw',
'zxyw',
'zxzw',
'zxwx',
'zxwy',
'zxwz',
'zxww',
'zyxw',
'zyyw',
'zyzw',
'zywx',
'zywy',
'zywz',
'zyww',
'zzxw',
'zzyw',
'zzzw',
'zzwx',
'zzwy',
'zzwz',
'zzww',
'zwxx',
'zwxy',
'zwxz',
'zwxw',
'zwyx',
'zwyy',
'zwyz',
'zwyw',
'zwzx',
'zwzy',
'zwzz',
'zwzw',
'zwwx',
'zwwy',
'zwwz',
'zwww',
'wxxx',
'wxxy',
'wxxz',
'wxxw',
'wxyx',
'wxyy',
'wxyz',
'wxyw',
'wxzx',
'wxzy',
'wxzz',
'wxzw',
'wxwx',
'wxwy',
'wxwz',
'wxww',
'wyxx',
'wyxy',
'wyxz',
'wyxw',
'wyyx',
'wyyy',
'wyyz',
'wyyw',
'wyzx',
'wyzy',
'wyzz',
'wyzw',
'wywx',
'wywy',
'wywz',
'wyww',
'wzxx',
'wzxy',
'wzxz',
'wzxw',
'wzyx',
'wzyy',
'wzyz',
'wzyw',
'wzzx',
'wzzy',
'wzzz',
'wzzw',
'wzwx',
'wzwy',
'wzwz',
'wzww',
'wwxx',
'wwxy',
'wwxz',
'wwxw',
'wwyx',
'wwyy',
'wwyz',
'wwyw',
'wwzx',
'wwzy',
'wwzz',
'wwzw',
'wwwx',
'wwwy',
'wwwz',
'wwww',
'ra',
'ga',
'ba',
'ar',
'ag',
'ab',
'aa',
'rra',
'rga',
'rba',
'rar',
'rag',
'rab',
'raa',
'gra',
'gga',
'gba',
'gar',
'gag',
'gab',
'gaa',
'bra',
'bga',
'bba',
'bar',
'bag',
'bab',
'baa',
'arr',
'arg',
'arb',
'ara',
'agr',
'agg',
'agb',
'aga',
'abr',
'abg',
'abb',
'aba',
'aar',
'aag',
'aab',
'aaa',
'rrra',
'rrga',
'rrba',
'rrar',
'rrag',
'rrab',
'rraa',
'rgra',
'rgga',
'rgba',
'rgar',
'rgag',
'rgab',
'rgaa',
'rbra',
'rbga',
'rbba',
'rbar',
'rbag',
'rbab',
'rbaa',
'rarr',
'rarg',
'rarb',
'rara',
'ragr',
'ragg',
'ragb',
'raga',
'rabr',
'rabg',
'rabb',
'raba',
'raar',
'raag',
'raab',
'raaa',
'grra',
'grga',
'grba',
'grar',
'grag',
'grab',
'graa',
'ggra',
'ggga',
'ggba',
'ggar',
'ggag',
'ggab',
'ggaa',
'gbra',
'gbga',
'gbba',
'gbar',
'gbag',
'gbab',
'gbaa',
'garr',
'garg',
'garb',
'gara',
'gagr',
'gagg',
'gagb',
'gaga',
'gabr',
'gabg',
'gabb',
'gaba',
'gaar',
'gaag',
'gaab',
'gaaa',
'brra',
'brga',
'brba',
'brar',
'brag',
'brab',
'braa',
'bgra',
'bgga',
'bgba',
'bgar',
'bgag',
'bgab',
'bgaa',
'bbra',
'bbga',
'bbba',
'bbar',
'bbag',
'bbab',
'bbaa',
'barr',
'barg',
'barb',
'bara',
'bagr',
'bagg',
'bagb',
'baga',
'babr',
'babg',
'babb',
'baba',
'baar',
'baag',
'baab',
'baaa',
'arrr',
'arrg',
'arrb',
'arra',
'argr',
'argg',
'argb',
'arga',
'arbr',
'arbg',
'arbb',
'arba',
'arar',
'arag',
'arab',
'araa',
'agrr',
'agrg',
'agrb',
'agra',
'aggr',
'aggg',
'aggb',
'agga',
'agbr',
'agbg',
'agbb',
'agba',
'agar',
'agag',
'agab',
'agaa',
'abrr',
'abrg',
'abrb',
'abra',
'abgr',
'abgg',
'abgb',
'abga',
'abbr',
'abbg',
'abbb',
'abba',
'abar',
'abag',
'abab',
'abaa',
'aarr',
'aarg',
'aarb',
'aara',
'aagr',
'aagg',
'aagb',
'aaga',
'aabr',
'aabg',
'aabb',
'aaba',
'aaar',
'aaag',
'aaab',
'aaaa',
],
$ = { x: 0, r: 0, y: 1, g: 1, z: 2, b: 2, w: 3, a: 3 };
function J(h) {
switch (h.length) {
case 2:
return function () {
return new S(this[$[h[0]]], this[$[h[1]]]);
};
case 3:
return function () {
return new A(this[$[h[0]]], this[$[h[1]]], this[$[h[2]]]);
};
case 4:
return function () {
return new q(
this[$[h[0]]],
this[$[h[1]]],
this[$[h[2]]],
this[$[h[3]]],
);
};
}
}
var ce = !1;
function ze() {
if (!ce) {
for (let h of Re) {
let e = J(h);
Object.defineProperty(S.prototype, h, { get: e }),
Object.defineProperty(A.prototype, h, { get: e }),
Object.defineProperty(q.prototype, h, { get: e });
}
for (let h of Ve) {
let e = J(h);
Object.defineProperty(A.prototype, h, { get: e }),
Object.defineProperty(q.prototype, h, { get: e });
}
for (let h of ge) {
let e = J(h);
Object.defineProperty(q.prototype, h, { get: e });
}
ce = !0;
}
}
export {
ze as EnableSwizzles,
j as Mat2,
C as Mat2d,
X as Mat3,
O as Mat4,
I as Quat,
P as Quat2,
S as Vec2,
A as Vec3,
q as Vec4,
ye as mat2,
Le as mat2d,
ke as mat3,
le as mat4,
me as quat,
oe as quat2,
xe as vec2,
Me as vec3,
be as vec4,
};