var u = 'zyx', we = Math.PI / 180, pe = 180 / Math.PI; var _ = new Float32Array([1, 0, 0, 1]), j = class h extends Float32Array { static BYTE_LENGTH = 4 * Float32Array.BYTES_PER_ELEMENT; constructor(...e) { switch (e.length) { case 4: super(e); break; case 2: super(e[0], e[1], 4); break; case 1: let t = e[0]; typeof t == 'number' ? super([t, t, t, t]) : super(t, 0, 4); break; default: super(_); break; } } get str() { return h.str(this); } copy(e) { return this.set(e), this; } identity() { return this.set(_), this; } multiply(e) { return h.multiply(this, this, e); } mul(e) { return this; } transpose() { return h.transpose(this, this); } invert() { return h.invert(this, this); } scale(e) { return h.scale(this, this, e); } rotate(e) { return h.rotate(this, this, e); } static create() { return new h(); } static clone(e) { return new h(e); } static copy(e, t) { return ( (e[0] = t[0]), (e[1] = t[1]), (e[2] = t[2]), (e[3] = t[3]), e ); } static fromValues(...e) { return new h(...e); } static set(e, ...t) { return ( (e[0] = t[0]), (e[1] = t[1]), (e[2] = t[2]), (e[3] = t[3]), e ); } static identity(e) { return (e[0] = 1), (e[1] = 0), (e[2] = 0), (e[3] = 1), e; } static transpose(e, t) { if (e === t) { let n = t[1]; (e[1] = t[2]), (e[2] = n); } else (e[0] = t[0]), (e[1] = t[2]), (e[2] = t[1]), (e[3] = t[3]); return e; } static invert(e, t) { let n = t[0], r = t[1], a = t[2], s = t[3], i = n * s - a * r; return i ? ((i = 1 / i), (e[0] = s * i), (e[1] = -r * i), (e[2] = -a * i), (e[3] = n * i), e) : null; } static adjoint(e, t) { let n = t[0]; return (e[0] = t[3]), (e[1] = -t[1]), (e[2] = -t[2]), (e[3] = n), e; } static determinant(e) { return e[0] * e[3] - e[2] * e[1]; } static add(e, t, n) { return ( (e[0] = t[0] + n[0]), (e[1] = t[1] + n[1]), (e[2] = t[2] + n[2]), (e[3] = t[3] + n[3]), e ); } static subtract(e, t, n) { return ( (e[0] = t[0] - n[0]), (e[1] = t[1] - n[1]), (e[2] = t[2] - n[2]), (e[3] = t[3] - n[3]), e ); } static sub(e, t, n) { return e; } static multiply(e, t, n) { let r = t[0], a = t[1], s = t[2], i = t[3], c = n[0], y = n[1], L = n[2], k = n[3]; return ( (e[0] = r * c + s * y), (e[1] = a * c + i * y), (e[2] = r * L + s * k), (e[3] = a * L + i * k), e ); } static mul(e, t, n) { return e; } static rotate(e, t, n) { let r = t[0], a = t[1], s = t[2], i = t[3], c = Math.sin(n), y = Math.cos(n); return ( (e[0] = r * y + s * c), (e[1] = a * y + i * c), (e[2] = r * -c + s * y), (e[3] = a * -c + i * y), e ); } static scale(e, t, n) { let r = t[0], a = t[1], s = t[2], i = t[3], c = n[0], y = n[1]; return ( (e[0] = r * c), (e[1] = a * c), (e[2] = s * y), (e[3] = i * y), e ); } static fromRotation(e, t) { let n = Math.sin(t), r = Math.cos(t); return (e[0] = r), (e[1] = n), (e[2] = -n), (e[3] = r), e; } static fromScaling(e, t) { return (e[0] = t[0]), (e[1] = 0), (e[2] = 0), (e[3] = t[1]), e; } static frob(e) { return Math.sqrt( e[0] * e[0] + e[1] * e[1] + e[2] * e[2] + e[3] * e[3], ); } static multiplyScalar(e, t, n) { return ( (e[0] = t[0] * n), (e[1] = t[1] * n), (e[2] = t[2] * n), (e[3] = t[3] * n), e ); } static multiplyScalarAndAdd(e, t, n, r) { return ( (e[0] = t[0] + n[0] * r), (e[1] = t[1] + n[1] * r), (e[2] = t[2] + n[2] * r), (e[3] = t[3] + n[3] * r), e ); } static LDU(e, t, n, r) { return ( (e[2] = r[2] / r[0]), (n[0] = r[0]), (n[1] = r[1]), (n[3] = r[3] - e[2] * n[1]), [e, t, n] ); } static exactEquals(e, t) { return ( e[0] === t[0] && e[1] === t[1] && e[2] === t[2] && e[3] === t[3] ); } static equals(e, t) { let n = e[0], r = e[1], a = e[2], s = e[3], i = t[0], c = t[1], y = t[2], L = t[3]; return ( Math.abs(n - i) <= 1e-6 * Math.max(1, Math.abs(n), Math.abs(i)) && Math.abs(r - c) <= 1e-6 * Math.max(1, Math.abs(r), Math.abs(c)) && Math.abs(a - y) <= 1e-6 * Math.max(1, Math.abs(a), Math.abs(y)) && Math.abs(s - L) <= 1e-6 * Math.max(1, Math.abs(s), Math.abs(L)) ); } static str(e) { return `Mat2(${e.join(', ')})`; } }; j.prototype.mul = j.prototype.multiply; j.mul = j.multiply; j.sub = j.subtract; var ye = j; var ee = new Float32Array([1, 0, 0, 1, 0, 0]), C = class h extends Float32Array { static BYTE_LENGTH = 6 * Float32Array.BYTES_PER_ELEMENT; constructor(...e) { switch (e.length) { case 6: super(e); break; case 2: super(e[0], e[1], 6); break; case 1: let t = e[0]; typeof t == 'number' ? super([t, t, t, t, t, t]) : super(t, 0, 6); break; default: super(ee); break; } } get str() { return h.str(this); } copy(e) { return this.set(e), this; } identity() { return this.set(ee), this; } multiply(e) { return h.multiply(this, this, e); } mul(e) { return this; } translate(e) { return h.translate(this, this, e); } rotate(e) { return h.rotate(this, this, e); } scale(e) { return h.scale(this, this, e); } static create() { return new h(); } static clone(e) { return new h(e); } static copy(e, t) { return ( (e[0] = t[0]), (e[1] = t[1]), (e[2] = t[2]), (e[3] = t[3]), (e[4] = t[4]), (e[5] = t[5]), e ); } static fromValues(...e) { return new h(...e); } static set(e, ...t) { return ( (e[0] = t[0]), (e[1] = t[1]), (e[2] = t[2]), (e[3] = t[3]), (e[4] = t[4]), (e[5] = t[5]), e ); } static identity(e) { return ( (e[0] = 1), (e[1] = 0), (e[2] = 0), (e[3] = 1), (e[4] = 0), (e[5] = 0), e ); } static invert(e, t) { let n = t[0], r = t[1], a = t[2], s = t[3], i = t[4], c = t[5], y = n * s - r * a; return y ? ((y = 1 / y), (e[0] = s * y), (e[1] = -r * y), (e[2] = -a * y), (e[3] = n * y), (e[4] = (a * c - s * i) * y), (e[5] = (r * i - n * c) * y), e) : null; } static determinant(e) { return e[0] * e[3] - e[1] * e[2]; } static add(e, t, n) { return ( (e[0] = t[0] + n[0]), (e[1] = t[1] + n[1]), (e[2] = t[2] + n[2]), (e[3] = t[3] + n[3]), (e[4] = t[4] + n[4]), (e[5] = t[5] + n[5]), e ); } static subtract(e, t, n) { return ( (e[0] = t[0] - n[0]), (e[1] = t[1] - n[1]), (e[2] = t[2] - n[2]), (e[3] = t[3] - n[3]), (e[4] = t[4] - n[4]), (e[5] = t[5] - n[5]), e ); } static sub(e, t, n) { return e; } static multiply(e, t, n) { let r = t[0], a = t[1], s = t[2], i = t[3], c = t[4], y = t[5], L = n[0], k = n[1], l = n[2], b = n[3], M = n[4], d = n[5]; return ( (e[0] = r * L + s * k), (e[1] = a * L + i * k), (e[2] = r * l + s * b), (e[3] = a * l + i * b), (e[4] = r * M + s * d + c), (e[5] = a * M + i * d + y), e ); } static mul(e, t, n) { return e; } static translate(e, t, n) { let r = t[0], a = t[1], s = t[2], i = t[3], c = t[4], y = t[5], L = n[0], k = n[1]; return ( (e[0] = r), (e[1] = a), (e[2] = s), (e[3] = i), (e[4] = r * L + s * k + c), (e[5] = a * L + i * k + y), e ); } static rotate(e, t, n) { let r = t[0], a = t[1], s = t[2], i = t[3], c = t[4], y = t[5], L = Math.sin(n), k = Math.cos(n); return ( (e[0] = r * k + s * L), (e[1] = a * k + i * L), (e[2] = r * -L + s * k), (e[3] = a * -L + i * k), (e[4] = c), (e[5] = y), e ); } static scale(e, t, n) { let r = t[0], a = t[1], s = t[2], i = t[3], c = t[4], y = t[5], L = n[0], k = n[1]; return ( (e[0] = r * L), (e[1] = a * L), (e[2] = s * k), (e[3] = i * k), (e[4] = c), (e[5] = y), e ); } static fromTranslation(e, t) { return ( (e[0] = 1), (e[1] = 0), (e[2] = 0), (e[3] = 1), (e[4] = t[0]), (e[5] = t[1]), e ); } static fromRotation(e, t) { let n = Math.sin(t), r = Math.cos(t); return ( (e[0] = r), (e[1] = n), (e[2] = -n), (e[3] = r), (e[4] = 0), (e[5] = 0), e ); } static fromScaling(e, t) { return ( (e[0] = t[0]), (e[1] = 0), (e[2] = 0), (e[3] = t[1]), (e[4] = 0), (e[5] = 0), e ); } static frob(e) { return Math.sqrt( e[0] * e[0] + e[1] * e[1] + e[2] * e[2] + e[3] * e[3] + e[4] * e[4] + e[5] * e[5] + 1, ); } static multiplyScalar(e, t, n) { return ( (e[0] = t[0] * n), (e[1] = t[1] * n), (e[2] = t[2] * n), (e[3] = t[3] * n), (e[4] = t[4] * n), (e[5] = t[5] * n), e ); } static multiplyScalarAndAdd(e, t, n, r) { return ( (e[0] = t[0] + n[0] * r), (e[1] = t[1] + n[1] * r), (e[2] = t[2] + n[2] * r), (e[3] = t[3] + n[3] * r), (e[4] = t[4] + n[4] * r), (e[5] = t[5] + n[5] * r), e ); } static exactEquals(e, t) { return ( e[0] === t[0] && e[1] === t[1] && e[2] === t[2] && e[3] === t[3] && e[4] === t[4] && e[5] === t[5] ); } static equals(e, t) { let n = e[0], r = e[1], a = e[2], s = e[3], i = e[4], c = e[5], y = t[0], L = t[1], k = t[2], l = t[3], b = t[4], M = t[5]; return ( Math.abs(n - y) <= 1e-6 * Math.max(1, Math.abs(n), Math.abs(y)) && Math.abs(r - L) <= 1e-6 * Math.max(1, Math.abs(r), Math.abs(L)) && Math.abs(a - k) <= 1e-6 * Math.max(1, Math.abs(a), Math.abs(k)) && Math.abs(s - l) <= 1e-6 * Math.max(1, Math.abs(s), Math.abs(l)) && Math.abs(i - b) <= 1e-6 * Math.max(1, Math.abs(i), Math.abs(b)) && Math.abs(c - M) <= 1e-6 * Math.max(1, Math.abs(c), Math.abs(M)) ); } static str(e) { return `Mat2d(${e.join(', ')})`; } }; C.mul = C.multiply; C.sub = C.subtract; var Le = C; var te = new Float32Array([1, 0, 0, 0, 1, 0, 0, 0, 1]), X = class h extends Float32Array { static BYTE_LENGTH = 9 * Float32Array.BYTES_PER_ELEMENT; constructor(...e) { switch (e.length) { case 9: super(e); break; case 2: super(e[0], e[1], 9); break; case 1: let t = e[0]; typeof t == 'number' ? super([t, t, t, t, t, t, t, t, t]) : super(t, 0, 9); break; default: super(te); break; } } get str() { return h.str(this); } copy(e) { return this.set(e), this; } identity() { return this.set(te), this; } multiply(e) { return h.multiply(this, this, e); } mul(e) { return this; } transpose() { return h.transpose(this, this); } invert() { return h.invert(this, this); } translate(e) { return h.translate(this, this, e); } rotate(e) { return h.rotate(this, this, e); } scale(e) { return h.scale(this, this, e); } static create() { return new h(); } static clone(e) { return new h(e); } static copy(e, t) { return ( (e[0] = t[0]), (e[1] = t[1]), (e[2] = t[2]), (e[3] = t[3]), (e[4] = t[4]), (e[5] = t[5]), (e[6] = t[6]), (e[7] = t[7]), (e[8] = t[8]), e ); } static fromValues(...e) { return new h(...e); } static set(e, ...t) { return ( (e[0] = t[0]), (e[1] = t[1]), (e[2] = t[2]), (e[3] = t[3]), (e[4] = t[4]), (e[5] = t[5]), (e[6] = t[6]), (e[7] = t[7]), (e[8] = t[8]), e ); } static identity(e) { return ( (e[0] = 1), (e[1] = 0), (e[2] = 0), (e[3] = 0), (e[4] = 1), (e[5] = 0), (e[6] = 0), (e[7] = 0), (e[8] = 1), e ); } static transpose(e, t) { if (e === t) { let n = t[1], r = t[2], a = t[5]; (e[1] = t[3]), (e[2] = t[6]), (e[3] = n), (e[5] = t[7]), (e[6] = r), (e[7] = a); } else (e[0] = t[0]), (e[1] = t[3]), (e[2] = t[6]), (e[3] = t[1]), (e[4] = t[4]), (e[5] = t[7]), (e[6] = t[2]), (e[7] = t[5]), (e[8] = t[8]); return e; } static invert(e, t) { let n = t[0], r = t[1], a = t[2], s = t[3], i = t[4], c = t[5], y = t[6], L = t[7], k = t[8], l = k * i - c * L, b = -k * s + c * y, M = L * s - i * y, d = n * l + r * b + a * M; return d ? ((d = 1 / d), (e[0] = l * d), (e[1] = (-k * r + a * L) * d), (e[2] = (c * r - a * i) * d), (e[3] = b * d), (e[4] = (k * n - a * y) * d), (e[5] = (-c * n + a * s) * d), (e[6] = M * d), (e[7] = (-L * n + r * y) * d), (e[8] = (i * n - r * s) * d), e) : null; } static adjoint(e, t) { let n = t[0], r = t[1], a = t[2], s = t[3], i = t[4], c = t[5], y = t[6], L = t[7], k = t[8]; return ( (e[0] = i * k - c * L), (e[1] = a * L - r * k), (e[2] = r * c - a * i), (e[3] = c * y - s * k), (e[4] = n * k - a * y), (e[5] = a * s - n * c), (e[6] = s * L - i * y), (e[7] = r * y - n * L), (e[8] = n * i - r * s), e ); } static determinant(e) { let t = e[0], n = e[1], r = e[2], a = e[3], s = e[4], i = e[5], c = e[6], y = e[7], L = e[8]; return ( t * (L * s - i * y) + n * (-L * a + i * c) + r * (y * a - s * c) ); } static add(e, t, n) { return ( (e[0] = t[0] + n[0]), (e[1] = t[1] + n[1]), (e[2] = t[2] + n[2]), (e[3] = t[3] + n[3]), (e[4] = t[4] + n[4]), (e[5] = t[5] + n[5]), (e[6] = t[6] + n[6]), (e[7] = t[7] + n[7]), (e[8] = t[8] + n[8]), e ); } static subtract(e, t, n) { return ( (e[0] = t[0] - n[0]), (e[1] = t[1] - n[1]), (e[2] = t[2] - n[2]), (e[3] = t[3] - n[3]), (e[4] = t[4] - n[4]), (e[5] = t[5] - n[5]), (e[6] = t[6] - n[6]), (e[7] = t[7] - n[7]), (e[8] = t[8] - n[8]), e ); } static sub(e, t, n) { return e; } static multiply(e, t, n) { let r = t[0], a = t[1], s = t[2], i = t[3], c = t[4], y = t[5], L = t[6], k = t[7], l = t[8], b = n[0], M = n[1], d = n[2]; return ( (e[0] = b * r + M * i + d * L), (e[1] = b * a + M * c + d * k), (e[2] = b * s + M * y + d * l), (b = n[3]), (M = n[4]), (d = n[5]), (e[3] = b * r + M * i + d * L), (e[4] = b * a + M * c + d * k), (e[5] = b * s + M * y + d * l), (b = n[6]), (M = n[7]), (d = n[8]), (e[6] = b * r + M * i + d * L), (e[7] = b * a + M * c + d * k), (e[8] = b * s + M * y + d * l), e ); } static mul(e, t, n) { return e; } static translate(e, t, n) { let r = t[0], a = t[1], s = t[2], i = t[3], c = t[4], y = t[5], L = t[6], k = t[7], l = t[8], b = n[0], M = n[1]; return ( (e[0] = r), (e[1] = a), (e[2] = s), (e[3] = i), (e[4] = c), (e[5] = y), (e[6] = b * r + M * i + L), (e[7] = b * a + M * c + k), (e[8] = b * s + M * y + l), e ); } static rotate(e, t, n) { let r = t[0], a = t[1], s = t[2], i = t[3], c = t[4], y = t[5], L = t[6], k = t[7], l = t[8], b = Math.sin(n), M = Math.cos(n); return ( (e[0] = M * r + b * i), (e[1] = M * a + b * c), (e[2] = M * s + b * y), (e[3] = M * i - b * r), (e[4] = M * c - b * a), (e[5] = M * y - b * s), (e[6] = L), (e[7] = k), (e[8] = l), e ); } static scale(e, t, n) { let r = n[0], a = n[1]; return ( (e[0] = r * t[0]), (e[1] = r * t[1]), (e[2] = r * t[2]), (e[3] = a * t[3]), (e[4] = a * t[4]), (e[5] = a * t[5]), (e[6] = t[6]), (e[7] = t[7]), (e[8] = t[8]), e ); } static fromTranslation(e, t) { return ( (e[0] = 1), (e[1] = 0), (e[2] = 0), (e[3] = 0), (e[4] = 1), (e[5] = 0), (e[6] = t[0]), (e[7] = t[1]), (e[8] = 1), e ); } static fromRotation(e, t) { let n = Math.sin(t), r = Math.cos(t); return ( (e[0] = r), (e[1] = n), (e[2] = 0), (e[3] = -n), (e[4] = r), (e[5] = 0), (e[6] = 0), (e[7] = 0), (e[8] = 1), e ); } static fromScaling(e, t) { return ( (e[0] = t[0]), (e[1] = 0), (e[2] = 0), (e[3] = 0), (e[4] = t[1]), (e[5] = 0), (e[6] = 0), (e[7] = 0), (e[8] = 1), e ); } static fromMat2d(e, t) { return ( (e[0] = t[0]), (e[1] = t[1]), (e[2] = 0), (e[3] = t[2]), (e[4] = t[3]), (e[5] = 0), (e[6] = t[4]), (e[7] = t[5]), (e[8] = 1), e ); } static fromQuat(e, t) { let n = t[0], r = t[1], a = t[2], s = t[3], i = n + n, c = r + r, y = a + a, L = n * i, k = r * i, l = r * c, b = a * i, M = a * c, d = a * y, m = s * i, o = s * c, x = s * y; return ( (e[0] = 1 - l - d), (e[3] = k - x), (e[6] = b + o), (e[1] = k + x), (e[4] = 1 - L - d), (e[7] = M - m), (e[2] = b - o), (e[5] = M + m), (e[8] = 1 - L - l), e ); } static fromMat4(e, t) { return ( (e[0] = t[0]), (e[1] = t[1]), (e[2] = t[2]), (e[3] = t[4]), (e[4] = t[5]), (e[5] = t[6]), (e[6] = t[8]), (e[7] = t[9]), (e[8] = t[10]), e ); } static normalFromMat4(e, t) { let n = t[0], r = t[1], a = t[2], s = t[3], i = t[4], c = t[5], y = t[6], L = t[7], k = t[8], l = t[9], b = t[10], M = t[11], d = t[12], m = t[13], o = t[14], x = t[15], z = n * c - r * i, R = n * y - a * i, V = n * L - s * i, w = r * y - a * c, g = r * L - s * c, T = a * L - s * y, E = k * m - l * d, F = k * o - b * d, f = k * x - M * d, N = l * o - b * m, B = l * x - M * m, D = b * x - M * o, Q = z * D - R * B + V * N + w * f - g * F + T * E; return Q ? ((Q = 1 / Q), (e[0] = (c * D - y * B + L * N) * Q), (e[1] = (y * f - i * D - L * F) * Q), (e[2] = (i * B - c * f + L * E) * Q), (e[3] = (a * B - r * D - s * N) * Q), (e[4] = (n * D - a * f + s * F) * Q), (e[5] = (r * f - n * B - s * E) * Q), (e[6] = (m * T - o * g + x * w) * Q), (e[7] = (o * V - d * T - x * R) * Q), (e[8] = (d * g - m * V + x * z) * Q), e) : null; } static normalFromMat4Fast(e, t) { let n = t[0], r = t[1], a = t[2], s = t[4], i = t[5], c = t[6], y = t[8], L = t[9], k = t[10]; return ( (e[0] = i * k - k * L), (e[1] = c * y - y * k), (e[2] = s * L - L * y), (e[3] = L * a - k * r), (e[4] = k * n - y * a), (e[5] = y * r - L * n), (e[6] = r * c - a * i), (e[7] = a * s - n * c), (e[8] = n * i - r * s), e ); } static projection(e, t, n) { return ( (e[0] = 2 / t), (e[1] = 0), (e[2] = 0), (e[3] = 0), (e[4] = -2 / n), (e[5] = 0), (e[6] = -1), (e[7] = 1), (e[8] = 1), e ); } static frob(e) { return Math.sqrt( e[0] * e[0] + e[1] * e[1] + e[2] * e[2] + e[3] * e[3] + e[4] * e[4] + e[5] * e[5] + e[6] * e[6] + e[7] * e[7] + e[8] * e[8], ); } static multiplyScalar(e, t, n) { return ( (e[0] = t[0] * n), (e[1] = t[1] * n), (e[2] = t[2] * n), (e[3] = t[3] * n), (e[4] = t[4] * n), (e[5] = t[5] * n), (e[6] = t[6] * n), (e[7] = t[7] * n), (e[8] = t[8] * n), e ); } static multiplyScalarAndAdd(e, t, n, r) { return ( (e[0] = t[0] + n[0] * r), (e[1] = t[1] + n[1] * r), (e[2] = t[2] + n[2] * r), (e[3] = t[3] + n[3] * r), (e[4] = t[4] + n[4] * r), (e[5] = t[5] + n[5] * r), (e[6] = t[6] + n[6] * r), (e[7] = t[7] + n[7] * r), (e[8] = t[8] + n[8] * r), e ); } static exactEquals(e, t) { return ( e[0] === t[0] && e[1] === t[1] && e[2] === t[2] && e[3] === t[3] && e[4] === t[4] && e[5] === t[5] && e[6] === t[6] && e[7] === t[7] && e[8] === t[8] ); } static equals(e, t) { let n = e[0], r = e[1], a = e[2], s = e[3], i = e[4], c = e[5], y = e[6], L = e[7], k = e[8], l = t[0], b = t[1], M = t[2], d = t[3], m = t[4], o = t[5], x = t[6], z = t[7], R = t[8]; return ( Math.abs(n - l) <= 1e-6 * Math.max(1, Math.abs(n), Math.abs(l)) && Math.abs(r - b) <= 1e-6 * Math.max(1, Math.abs(r), Math.abs(b)) && Math.abs(a - M) <= 1e-6 * Math.max(1, Math.abs(a), Math.abs(M)) && Math.abs(s - d) <= 1e-6 * Math.max(1, Math.abs(s), Math.abs(d)) && Math.abs(i - m) <= 1e-6 * Math.max(1, Math.abs(i), Math.abs(m)) && Math.abs(c - o) <= 1e-6 * Math.max(1, Math.abs(c), Math.abs(o)) && Math.abs(y - x) <= 1e-6 * Math.max(1, Math.abs(y), Math.abs(x)) && Math.abs(L - z) <= 1e-6 * Math.max(1, Math.abs(L), Math.abs(z)) && Math.abs(k - R) <= 1e-6 * Math.max(1, Math.abs(k), Math.abs(R)) ); } static str(e) { return `Mat3(${e.join(', ')})`; } }; X.prototype.mul = X.prototype.multiply; X.mul = X.multiply; X.sub = X.subtract; var ke = X; var ne = new Float32Array([1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]), O = class h extends Float32Array { static BYTE_LENGTH = 16 * Float32Array.BYTES_PER_ELEMENT; constructor(...e) { switch (e.length) { case 16: super(e); break; case 2: super(e[0], e[1], 16); break; case 1: let t = e[0]; typeof t == 'number' ? super([ t, t, t, t, t, t, t, t, t, t, t, t, t, t, t, t, ]) : super(t, 0, 16); break; default: super(ne); break; } } get str() { return h.str(this); } copy(e) { return this.set(e), this; } identity() { return this.set(ne), this; } multiply(e) { return h.multiply(this, this, e); } mul(e) { return this; } transpose() { return h.transpose(this, this); } invert() { return h.invert(this, this); } translate(e) { return h.translate(this, this, e); } rotate(e, t) { return h.rotate(this, this, e, t); } scale(e) { return h.scale(this, this, e); } rotateX(e) { return h.rotateX(this, this, e); } rotateY(e) { return h.rotateY(this, this, e); } rotateZ(e) { return h.rotateZ(this, this, e); } perspectiveNO(e, t, n, r) { return h.perspectiveNO(this, e, t, n, r); } perspectiveZO(e, t, n, r) { return h.perspectiveZO(this, e, t, n, r); } orthoNO(e, t, n, r, a, s) { return h.orthoNO(this, e, t, n, r, a, s); } orthoZO(e, t, n, r, a, s) { return h.orthoZO(this, e, t, n, r, a, s); } static create() { return new h(); } static clone(e) { return new h(e); } static copy(e, t) { return ( (e[0] = t[0]), (e[1] = t[1]), (e[2] = t[2]), (e[3] = t[3]), (e[4] = t[4]), (e[5] = t[5]), (e[6] = t[6]), (e[7] = t[7]), (e[8] = t[8]), (e[9] = t[9]), (e[10] = t[10]), (e[11] = t[11]), (e[12] = t[12]), (e[13] = t[13]), (e[14] = t[14]), (e[15] = t[15]), e ); } static fromValues(...e) { return new h(...e); } static set(e, ...t) { return ( (e[0] = t[0]), (e[1] = t[1]), (e[2] = t[2]), (e[3] = t[3]), (e[4] = t[4]), (e[5] = t[5]), (e[6] = t[6]), (e[7] = t[7]), (e[8] = t[8]), (e[9] = t[9]), (e[10] = t[10]), (e[11] = t[11]), (e[12] = t[12]), (e[13] = t[13]), (e[14] = t[14]), (e[15] = t[15]), e ); } static identity(e) { return ( (e[0] = 1), (e[1] = 0), (e[2] = 0), (e[3] = 0), (e[4] = 0), (e[5] = 1), (e[6] = 0), (e[7] = 0), (e[8] = 0), (e[9] = 0), (e[10] = 1), (e[11] = 0), (e[12] = 0), (e[13] = 0), (e[14] = 0), (e[15] = 1), e ); } static transpose(e, t) { if (e === t) { let n = t[1], r = t[2], a = t[3], s = t[6], i = t[7], c = t[11]; (e[1] = t[4]), (e[2] = t[8]), (e[3] = t[12]), (e[4] = n), (e[6] = t[9]), (e[7] = t[13]), (e[8] = r), (e[9] = s), (e[11] = t[14]), (e[12] = a), (e[13] = i), (e[14] = c); } else (e[0] = t[0]), (e[1] = t[4]), (e[2] = t[8]), (e[3] = t[12]), (e[4] = t[1]), (e[5] = t[5]), (e[6] = t[9]), (e[7] = t[13]), (e[8] = t[2]), (e[9] = t[6]), (e[10] = t[10]), (e[11] = t[14]), (e[12] = t[3]), (e[13] = t[7]), (e[14] = t[11]), (e[15] = t[15]); return e; } static invert(e, t) { let n = t[0], r = t[1], a = t[2], s = t[3], i = t[4], c = t[5], y = t[6], L = t[7], k = t[8], l = t[9], b = t[10], M = t[11], d = t[12], m = t[13], o = t[14], x = t[15], z = n * c - r * i, R = n * y - a * i, V = n * L - s * i, w = r * y - a * c, g = r * L - s * c, T = a * L - s * y, E = k * m - l * d, F = k * o - b * d, f = k * x - M * d, N = l * o - b * m, B = l * x - M * m, D = b * x - M * o, Q = z * D - R * B + V * N + w * f - g * F + T * E; return Q ? ((Q = 1 / Q), (e[0] = (c * D - y * B + L * N) * Q), (e[1] = (a * B - r * D - s * N) * Q), (e[2] = (m * T - o * g + x * w) * Q), (e[3] = (b * g - l * T - M * w) * Q), (e[4] = (y * f - i * D - L * F) * Q), (e[5] = (n * D - a * f + s * F) * Q), (e[6] = (o * V - d * T - x * R) * Q), (e[7] = (k * T - b * V + M * R) * Q), (e[8] = (i * B - c * f + L * E) * Q), (e[9] = (r * f - n * B - s * E) * Q), (e[10] = (d * g - m * V + x * z) * Q), (e[11] = (l * V - k * g - M * z) * Q), (e[12] = (c * F - i * N - y * E) * Q), (e[13] = (n * N - r * F + a * E) * Q), (e[14] = (m * R - d * w - o * z) * Q), (e[15] = (k * w - l * R + b * z) * Q), e) : null; } static adjoint(e, t) { let n = t[0], r = t[1], a = t[2], s = t[3], i = t[4], c = t[5], y = t[6], L = t[7], k = t[8], l = t[9], b = t[10], M = t[11], d = t[12], m = t[13], o = t[14], x = t[15], z = n * c - r * i, R = n * y - a * i, V = n * L - s * i, w = r * y - a * c, g = r * L - s * c, T = a * L - s * y, E = k * m - l * d, F = k * o - b * d, f = k * x - M * d, N = l * o - b * m, B = l * x - M * m, D = b * x - M * o; return ( (e[0] = c * D - y * B + L * N), (e[1] = a * B - r * D - s * N), (e[2] = m * T - o * g + x * w), (e[3] = b * g - l * T - M * w), (e[4] = y * f - i * D - L * F), (e[5] = n * D - a * f + s * F), (e[6] = o * V - d * T - x * R), (e[7] = k * T - b * V + M * R), (e[8] = i * B - c * f + L * E), (e[9] = r * f - n * B - s * E), (e[10] = d * g - m * V + x * z), (e[11] = l * V - k * g - M * z), (e[12] = c * F - i * N - y * E), (e[13] = n * N - r * F + a * E), (e[14] = m * R - d * w - o * z), (e[15] = k * w - l * R + b * z), e ); } static determinant(e) { let t = e[0], n = e[1], r = e[2], a = e[3], s = e[4], i = e[5], c = e[6], y = e[7], L = e[8], k = e[9], l = e[10], b = e[11], M = e[12], d = e[13], m = e[14], o = e[15], x = t * i - n * s, z = t * c - r * s, R = n * c - r * i, V = L * d - k * M, w = L * m - l * M, g = k * m - l * d, T = t * g - n * w + r * V, E = s * g - i * w + c * V, F = L * R - k * z + l * x, f = M * R - d * z + m * x; return y * T - a * E + o * F - b * f; } static multiply(e, t, n) { let r = t[0], a = t[1], s = t[2], i = t[3], c = t[4], y = t[5], L = t[6], k = t[7], l = t[8], b = t[9], M = t[10], d = t[11], m = t[12], o = t[13], x = t[14], z = t[15], R = n[0], V = n[1], w = n[2], g = n[3]; return ( (e[0] = R * r + V * c + w * l + g * m), (e[1] = R * a + V * y + w * b + g * o), (e[2] = R * s + V * L + w * M + g * x), (e[3] = R * i + V * k + w * d + g * z), (R = n[4]), (V = n[5]), (w = n[6]), (g = n[7]), (e[4] = R * r + V * c + w * l + g * m), (e[5] = R * a + V * y + w * b + g * o), (e[6] = R * s + V * L + w * M + g * x), (e[7] = R * i + V * k + w * d + g * z), (R = n[8]), (V = n[9]), (w = n[10]), (g = n[11]), (e[8] = R * r + V * c + w * l + g * m), (e[9] = R * a + V * y + w * b + g * o), (e[10] = R * s + V * L + w * M + g * x), (e[11] = R * i + V * k + w * d + g * z), (R = n[12]), (V = n[13]), (w = n[14]), (g = n[15]), (e[12] = R * r + V * c + w * l + g * m), (e[13] = R * a + V * y + w * b + g * o), (e[14] = R * s + V * L + w * M + g * x), (e[15] = R * i + V * k + w * d + g * z), e ); } static mul(e, t, n) { return e; } static translate(e, t, n) { let r = n[0], a = n[1], s = n[2]; if (t === e) (e[12] = t[0] * r + t[4] * a + t[8] * s + t[12]), (e[13] = t[1] * r + t[5] * a + t[9] * s + t[13]), (e[14] = t[2] * r + t[6] * a + t[10] * s + t[14]), (e[15] = t[3] * r + t[7] * a + t[11] * s + t[15]); else { let i = t[0], c = t[1], y = t[2], L = t[3], k = t[4], l = t[5], b = t[6], M = t[7], d = t[8], m = t[9], o = t[10], x = t[11]; (e[0] = i), (e[1] = c), (e[2] = y), (e[3] = L), (e[4] = k), (e[5] = l), (e[6] = b), (e[7] = M), (e[8] = d), (e[9] = m), (e[10] = o), (e[11] = x), (e[12] = i * r + k * a + d * s + t[12]), (e[13] = c * r + l * a + m * s + t[13]), (e[14] = y * r + b * a + o * s + t[14]), (e[15] = L * r + M * a + x * s + t[15]); } return e; } static scale(e, t, n) { let r = n[0], a = n[1], s = n[2]; return ( (e[0] = t[0] * r), (e[1] = t[1] * r), (e[2] = t[2] * r), (e[3] = t[3] * r), (e[4] = t[4] * a), (e[5] = t[5] * a), (e[6] = t[6] * a), (e[7] = t[7] * a), (e[8] = t[8] * s), (e[9] = t[9] * s), (e[10] = t[10] * s), (e[11] = t[11] * s), (e[12] = t[12]), (e[13] = t[13]), (e[14] = t[14]), (e[15] = t[15]), e ); } static rotate(e, t, n, r) { let a = r[0], s = r[1], i = r[2], c = Math.sqrt(a * a + s * s + i * i); if (c < 1e-6) return null; (c = 1 / c), (a *= c), (s *= c), (i *= c); let y = Math.sin(n), L = Math.cos(n), k = 1 - L, l = t[0], b = t[1], M = t[2], d = t[3], m = t[4], o = t[5], x = t[6], z = t[7], R = t[8], V = t[9], w = t[10], g = t[11], T = a * a * k + L, E = s * a * k + i * y, F = i * a * k - s * y, f = a * s * k - i * y, N = s * s * k + L, B = i * s * k + a * y, D = a * i * k + s * y, Q = s * i * k - a * y, Z = i * i * k + L; return ( (e[0] = l * T + m * E + R * F), (e[1] = b * T + o * E + V * F), (e[2] = M * T + x * E + w * F), (e[3] = d * T + z * E + g * F), (e[4] = l * f + m * N + R * B), (e[5] = b * f + o * N + V * B), (e[6] = M * f + x * N + w * B), (e[7] = d * f + z * N + g * B), (e[8] = l * D + m * Q + R * Z), (e[9] = b * D + o * Q + V * Z), (e[10] = M * D + x * Q + w * Z), (e[11] = d * D + z * Q + g * Z), t !== e && ((e[12] = t[12]), (e[13] = t[13]), (e[14] = t[14]), (e[15] = t[15])), e ); } static rotateX(e, t, n) { let r = Math.sin(n), a = Math.cos(n), s = t[4], i = t[5], c = t[6], y = t[7], L = t[8], k = t[9], l = t[10], b = t[11]; return ( t !== e && ((e[0] = t[0]), (e[1] = t[1]), (e[2] = t[2]), (e[3] = t[3]), (e[12] = t[12]), (e[13] = t[13]), (e[14] = t[14]), (e[15] = t[15])), (e[4] = s * a + L * r), (e[5] = i * a + k * r), (e[6] = c * a + l * r), (e[7] = y * a + b * r), (e[8] = L * a - s * r), (e[9] = k * a - i * r), (e[10] = l * a - c * r), (e[11] = b * a - y * r), e ); } static rotateY(e, t, n) { let r = Math.sin(n), a = Math.cos(n), s = t[0], i = t[1], c = t[2], y = t[3], L = t[8], k = t[9], l = t[10], b = t[11]; return ( t !== e && ((e[4] = t[4]), (e[5] = t[5]), (e[6] = t[6]), (e[7] = t[7]), (e[12] = t[12]), (e[13] = t[13]), (e[14] = t[14]), (e[15] = t[15])), (e[0] = s * a - L * r), (e[1] = i * a - k * r), (e[2] = c * a - l * r), (e[3] = y * a - b * r), (e[8] = s * r + L * a), (e[9] = i * r + k * a), (e[10] = c * r + l * a), (e[11] = y * r + b * a), e ); } static rotateZ(e, t, n) { let r = Math.sin(n), a = Math.cos(n), s = t[0], i = t[1], c = t[2], y = t[3], L = t[4], k = t[5], l = t[6], b = t[7]; return ( t !== e && ((e[8] = t[8]), (e[9] = t[9]), (e[10] = t[10]), (e[11] = t[11]), (e[12] = t[12]), (e[13] = t[13]), (e[14] = t[14]), (e[15] = t[15])), (e[0] = s * a + L * r), (e[1] = i * a + k * r), (e[2] = c * a + l * r), (e[3] = y * a + b * r), (e[4] = L * a - s * r), (e[5] = k * a - i * r), (e[6] = l * a - c * r), (e[7] = b * a - y * r), e ); } static fromTranslation(e, t) { return ( (e[0] = 1), (e[1] = 0), (e[2] = 0), (e[3] = 0), (e[4] = 0), (e[5] = 1), (e[6] = 0), (e[7] = 0), (e[8] = 0), (e[9] = 0), (e[10] = 1), (e[11] = 0), (e[12] = t[0]), (e[13] = t[1]), (e[14] = t[2]), (e[15] = 1), e ); } static fromScaling(e, t) { return ( (e[0] = t[0]), (e[1] = 0), (e[2] = 0), (e[3] = 0), (e[4] = 0), (e[5] = t[1]), (e[6] = 0), (e[7] = 0), (e[8] = 0), (e[9] = 0), (e[10] = t[2]), (e[11] = 0), (e[12] = 0), (e[13] = 0), (e[14] = 0), (e[15] = 1), e ); } static fromRotation(e, t, n) { let r = n[0], a = n[1], s = n[2], i = Math.sqrt(r * r + a * a + s * s); if (i < 1e-6) return null; (i = 1 / i), (r *= i), (a *= i), (s *= i); let c = Math.sin(t), y = Math.cos(t), L = 1 - y; return ( (e[0] = r * r * L + y), (e[1] = a * r * L + s * c), (e[2] = s * r * L - a * c), (e[3] = 0), (e[4] = r * a * L - s * c), (e[5] = a * a * L + y), (e[6] = s * a * L + r * c), (e[7] = 0), (e[8] = r * s * L + a * c), (e[9] = a * s * L - r * c), (e[10] = s * s * L + y), (e[11] = 0), (e[12] = 0), (e[13] = 0), (e[14] = 0), (e[15] = 1), e ); } static fromXRotation(e, t) { let n = Math.sin(t), r = Math.cos(t); return ( (e[0] = 1), (e[1] = 0), (e[2] = 0), (e[3] = 0), (e[4] = 0), (e[5] = r), (e[6] = n), (e[7] = 0), (e[8] = 0), (e[9] = -n), (e[10] = r), (e[11] = 0), (e[12] = 0), (e[13] = 0), (e[14] = 0), (e[15] = 1), e ); } static fromYRotation(e, t) { let n = Math.sin(t), r = Math.cos(t); return ( (e[0] = r), (e[1] = 0), (e[2] = -n), (e[3] = 0), (e[4] = 0), (e[5] = 1), (e[6] = 0), (e[7] = 0), (e[8] = n), (e[9] = 0), (e[10] = r), (e[11] = 0), (e[12] = 0), (e[13] = 0), (e[14] = 0), (e[15] = 1), e ); } static fromZRotation(e, t) { let n = Math.sin(t), r = Math.cos(t); return ( (e[0] = r), (e[1] = n), (e[2] = 0), (e[3] = 0), (e[4] = -n), (e[5] = r), (e[6] = 0), (e[7] = 0), (e[8] = 0), (e[9] = 0), (e[10] = 1), (e[11] = 0), (e[12] = 0), (e[13] = 0), (e[14] = 0), (e[15] = 1), e ); } static fromRotationTranslation(e, t, n) { let r = t[0], a = t[1], s = t[2], i = t[3], c = r + r, y = a + a, L = s + s, k = r * c, l = r * y, b = r * L, M = a * y, d = a * L, m = s * L, o = i * c, x = i * y, z = i * L; return ( (e[0] = 1 - (M + m)), (e[1] = l + z), (e[2] = b - x), (e[3] = 0), (e[4] = l - z), (e[5] = 1 - (k + m)), (e[6] = d + o), (e[7] = 0), (e[8] = b + x), (e[9] = d - o), (e[10] = 1 - (k + M)), (e[11] = 0), (e[12] = n[0]), (e[13] = n[1]), (e[14] = n[2]), (e[15] = 1), e ); } static fromQuat2(e, t) { let n = -t[0], r = -t[1], a = -t[2], s = t[3], i = t[4], c = t[5], y = t[6], L = t[7], k = n * n + r * r + a * a + s * s; return ( k > 0 ? ((Y[0] = ((i * s + L * n + c * a - y * r) * 2) / k), (Y[1] = ((c * s + L * r + y * n - i * a) * 2) / k), (Y[2] = ((y * s + L * a + i * r - c * n) * 2) / k)) : ((Y[0] = (i * s + L * n + c * a - y * r) * 2), (Y[1] = (c * s + L * r + y * n - i * a) * 2), (Y[2] = (y * s + L * a + i * r - c * n) * 2)), h.fromRotationTranslation(e, t, Y), e ); } static normalFromMat4(e, t) { let n = t[0], r = t[1], a = t[2], s = t[3], i = t[4], c = t[5], y = t[6], L = t[7], k = t[8], l = t[9], b = t[10], M = t[11], d = t[12], m = t[13], o = t[14], x = t[15], z = n * c - r * i, R = n * y - a * i, V = n * L - s * i, w = r * y - a * c, g = r * L - s * c, T = a * L - s * y, E = k * m - l * d, F = k * o - b * d, f = k * x - M * d, N = l * o - b * m, B = l * x - M * m, D = b * x - M * o, Q = z * D - R * B + V * N + w * f - g * F + T * E; return Q ? ((Q = 1 / Q), (e[0] = (c * D - y * B + L * N) * Q), (e[1] = (y * f - i * D - L * F) * Q), (e[2] = (i * B - c * f + L * E) * Q), (e[3] = 0), (e[4] = (a * B - r * D - s * N) * Q), (e[5] = (n * D - a * f + s * F) * Q), (e[6] = (r * f - n * B - s * E) * Q), (e[7] = 0), (e[8] = (m * T - o * g + x * w) * Q), (e[9] = (o * V - d * T - x * R) * Q), (e[10] = (d * g - m * V + x * z) * Q), (e[11] = 0), (e[12] = 0), (e[13] = 0), (e[14] = 0), (e[15] = 1), e) : null; } static normalFromMat4Fast(e, t) { let n = t[0], r = t[1], a = t[2], s = t[4], i = t[5], c = t[6], y = t[8], L = t[9], k = t[10]; return ( (e[0] = i * k - k * L), (e[1] = c * y - y * k), (e[2] = s * L - L * y), (e[3] = 0), (e[4] = L * a - k * r), (e[5] = k * n - y * a), (e[6] = y * r - L * n), (e[7] = 0), (e[8] = r * c - a * i), (e[9] = a * s - n * c), (e[10] = n * i - r * s), (e[11] = 0), (e[12] = 0), (e[13] = 0), (e[14] = 0), (e[15] = 1), e ); } static getTranslation(e, t) { return (e[0] = t[12]), (e[1] = t[13]), (e[2] = t[14]), e; } static getScaling(e, t) { let n = t[0], r = t[1], a = t[2], s = t[4], i = t[5], c = t[6], y = t[8], L = t[9], k = t[10]; return ( (e[0] = Math.sqrt(n * n + r * r + a * a)), (e[1] = Math.sqrt(s * s + i * i + c * c)), (e[2] = Math.sqrt(y * y + L * L + k * k)), e ); } static getRotation(e, t) { h.getScaling(Y, t); let n = 1 / Y[0], r = 1 / Y[1], a = 1 / Y[2], s = t[0] * n, i = t[1] * r, c = t[2] * a, y = t[4] * n, L = t[5] * r, k = t[6] * a, l = t[8] * n, b = t[9] * r, M = t[10] * a, d = s + L + M, m = 0; return ( d > 0 ? ((m = Math.sqrt(d + 1) * 2), (e[3] = 0.25 * m), (e[0] = (k - b) / m), (e[1] = (l - c) / m), (e[2] = (i - y) / m)) : s > L && s > M ? ((m = Math.sqrt(1 + s - L - M) * 2), (e[3] = (k - b) / m), (e[0] = 0.25 * m), (e[1] = (i + y) / m), (e[2] = (l + c) / m)) : L > M ? ((m = Math.sqrt(1 + L - s - M) * 2), (e[3] = (l - c) / m), (e[0] = (i + y) / m), (e[1] = 0.25 * m), (e[2] = (k + b) / m)) : ((m = Math.sqrt(1 + M - s - L) * 2), (e[3] = (i - y) / m), (e[0] = (l + c) / m), (e[1] = (k + b) / m), (e[2] = 0.25 * m)), e ); } static decompose(e, t, n, r) { (t[0] = r[12]), (t[1] = r[13]), (t[2] = r[14]); let a = r[0], s = r[1], i = r[2], c = r[4], y = r[5], L = r[6], k = r[8], l = r[9], b = r[10]; (n[0] = Math.sqrt(a * a + s * s + i * i)), (n[1] = Math.sqrt(c * c + y * y + L * L)), (n[2] = Math.sqrt(k * k + l * l + b * b)); let M = 1 / n[0], d = 1 / n[1], m = 1 / n[2], o = a * M, x = s * d, z = i * m, R = c * M, V = y * d, w = L * m, g = k * M, T = l * d, E = b * m, F = o + V + E, f = 0; return ( F > 0 ? ((f = Math.sqrt(F + 1) * 2), (e[3] = 0.25 * f), (e[0] = (w - T) / f), (e[1] = (g - z) / f), (e[2] = (x - R) / f)) : o > V && o > E ? ((f = Math.sqrt(1 + o - V - E) * 2), (e[3] = (w - T) / f), (e[0] = 0.25 * f), (e[1] = (x + R) / f), (e[2] = (g + z) / f)) : V > E ? ((f = Math.sqrt(1 + V - o - E) * 2), (e[3] = (g - z) / f), (e[0] = (x + R) / f), (e[1] = 0.25 * f), (e[2] = (w + T) / f)) : ((f = Math.sqrt(1 + E - o - V) * 2), (e[3] = (x - R) / f), (e[0] = (g + z) / f), (e[1] = (w + T) / f), (e[2] = 0.25 * f)), e ); } static fromRotationTranslationScale(e, t, n, r) { let a = t[0], s = t[1], i = t[2], c = t[3], y = a + a, L = s + s, k = i + i, l = a * y, b = a * L, M = a * k, d = s * L, m = s * k, o = i * k, x = c * y, z = c * L, R = c * k, V = r[0], w = r[1], g = r[2]; return ( (e[0] = (1 - (d + o)) * V), (e[1] = (b + R) * V), (e[2] = (M - z) * V), (e[3] = 0), (e[4] = (b - R) * w), (e[5] = (1 - (l + o)) * w), (e[6] = (m + x) * w), (e[7] = 0), (e[8] = (M + z) * g), (e[9] = (m - x) * g), (e[10] = (1 - (l + d)) * g), (e[11] = 0), (e[12] = n[0]), (e[13] = n[1]), (e[14] = n[2]), (e[15] = 1), e ); } static fromRotationTranslationScaleOrigin(e, t, n, r, a) { let s = t[0], i = t[1], c = t[2], y = t[3], L = s + s, k = i + i, l = c + c, b = s * L, M = s * k, d = s * l, m = i * k, o = i * l, x = c * l, z = y * L, R = y * k, V = y * l, w = r[0], g = r[1], T = r[2], E = a[0], F = a[1], f = a[2], N = (1 - (m + x)) * w, B = (M + V) * w, D = (d - R) * w, Q = (M - V) * g, Z = (1 - (b + x)) * g, W = (o + z) * g, U = (d + R) * T, K = (o - z) * T, v = (1 - (b + m)) * T; return ( (e[0] = N), (e[1] = B), (e[2] = D), (e[3] = 0), (e[4] = Q), (e[5] = Z), (e[6] = W), (e[7] = 0), (e[8] = U), (e[9] = K), (e[10] = v), (e[11] = 0), (e[12] = n[0] + E - (N * E + Q * F + U * f)), (e[13] = n[1] + F - (B * E + Z * F + K * f)), (e[14] = n[2] + f - (D * E + W * F + v * f)), (e[15] = 1), e ); } static fromQuat(e, t) { let n = t[0], r = t[1], a = t[2], s = t[3], i = n + n, c = r + r, y = a + a, L = n * i, k = r * i, l = r * c, b = a * i, M = a * c, d = a * y, m = s * i, o = s * c, x = s * y; return ( (e[0] = 1 - l - d), (e[1] = k + x), (e[2] = b - o), (e[3] = 0), (e[4] = k - x), (e[5] = 1 - L - d), (e[6] = M + m), (e[7] = 0), (e[8] = b + o), (e[9] = M - m), (e[10] = 1 - L - l), (e[11] = 0), (e[12] = 0), (e[13] = 0), (e[14] = 0), (e[15] = 1), e ); } static frustumNO(e, t, n, r, a, s, i = 1 / 0) { let c = 1 / (n - t), y = 1 / (a - r); if ( ((e[0] = s * 2 * c), (e[1] = 0), (e[2] = 0), (e[3] = 0), (e[4] = 0), (e[5] = s * 2 * y), (e[6] = 0), (e[7] = 0), (e[8] = (n + t) * c), (e[9] = (a + r) * y), (e[11] = -1), (e[12] = 0), (e[13] = 0), (e[15] = 0), i != null && i !== 1 / 0) ) { let L = 1 / (s - i); (e[10] = (i + s) * L), (e[14] = 2 * i * s * L); } else (e[10] = -1), (e[14] = -2 * s); return e; } static frustum(e, t, n, r, a, s, i = 1 / 0) { return e; } static frustumZO(e, t, n, r, a, s, i = 1 / 0) { let c = 1 / (n - t), y = 1 / (a - r); if ( ((e[0] = s * 2 * c), (e[1] = 0), (e[2] = 0), (e[3] = 0), (e[4] = 0), (e[5] = s * 2 * y), (e[6] = 0), (e[7] = 0), (e[8] = (n + t) * c), (e[9] = (a + r) * y), (e[11] = -1), (e[12] = 0), (e[13] = 0), (e[15] = 0), i != null && i !== 1 / 0) ) { let L = 1 / (s - i); (e[10] = i * L), (e[14] = i * s * L); } else (e[10] = -1), (e[14] = -s); return e; } static perspectiveNO(e, t, n, r, a = 1 / 0) { let s = 1 / Math.tan(t / 2); if ( ((e[0] = s / n), (e[1] = 0), (e[2] = 0), (e[3] = 0), (e[4] = 0), (e[5] = s), (e[6] = 0), (e[7] = 0), (e[8] = 0), (e[9] = 0), (e[11] = -1), (e[12] = 0), (e[13] = 0), (e[15] = 0), a != null && a !== 1 / 0) ) { let i = 1 / (r - a); (e[10] = (a + r) * i), (e[14] = 2 * a * r * i); } else (e[10] = -1), (e[14] = -2 * r); return e; } static perspective(e, t, n, r, a = 1 / 0) { return e; } static perspectiveZO(e, t, n, r, a = 1 / 0) { let s = 1 / Math.tan(t / 2); if ( ((e[0] = s / n), (e[1] = 0), (e[2] = 0), (e[3] = 0), (e[4] = 0), (e[5] = s), (e[6] = 0), (e[7] = 0), (e[8] = 0), (e[9] = 0), (e[11] = -1), (e[12] = 0), (e[13] = 0), (e[15] = 0), a != null && a !== 1 / 0) ) { let i = 1 / (r - a); (e[10] = a * i), (e[14] = a * r * i); } else (e[10] = -1), (e[14] = -r); return e; } static perspectiveFromFieldOfView(e, t, n, r) { let a = Math.tan((t.upDegrees * Math.PI) / 180), s = Math.tan((t.downDegrees * Math.PI) / 180), i = Math.tan((t.leftDegrees * Math.PI) / 180), c = Math.tan((t.rightDegrees * Math.PI) / 180), y = 2 / (i + c), L = 2 / (a + s); return ( (e[0] = y), (e[1] = 0), (e[2] = 0), (e[3] = 0), (e[4] = 0), (e[5] = L), (e[6] = 0), (e[7] = 0), (e[8] = -((i - c) * y * 0.5)), (e[9] = (a - s) * L * 0.5), (e[10] = r / (n - r)), (e[11] = -1), (e[12] = 0), (e[13] = 0), (e[14] = (r * n) / (n - r)), (e[15] = 0), e ); } static orthoNO(e, t, n, r, a, s, i) { let c = 1 / (t - n), y = 1 / (r - a), L = 1 / (s - i); return ( (e[0] = -2 * c), (e[1] = 0), (e[2] = 0), (e[3] = 0), (e[4] = 0), (e[5] = -2 * y), (e[6] = 0), (e[7] = 0), (e[8] = 0), (e[9] = 0), (e[10] = 2 * L), (e[11] = 0), (e[12] = (t + n) * c), (e[13] = (a + r) * y), (e[14] = (i + s) * L), (e[15] = 1), e ); } static ortho(e, t, n, r, a, s, i) { return e; } static orthoZO(e, t, n, r, a, s, i) { let c = 1 / (t - n), y = 1 / (r - a), L = 1 / (s - i); return ( (e[0] = -2 * c), (e[1] = 0), (e[2] = 0), (e[3] = 0), (e[4] = 0), (e[5] = -2 * y), (e[6] = 0), (e[7] = 0), (e[8] = 0), (e[9] = 0), (e[10] = L), (e[11] = 0), (e[12] = (t + n) * c), (e[13] = (a + r) * y), (e[14] = s * L), (e[15] = 1), e ); } static lookAt(e, t, n, r) { let a = t[0], s = t[1], i = t[2], c = r[0], y = r[1], L = r[2], k = n[0], l = n[1], b = n[2]; if ( Math.abs(a - k) < 1e-6 && Math.abs(s - l) < 1e-6 && Math.abs(i - b) < 1e-6 ) return h.identity(e); let M = a - k, d = s - l, m = i - b, o = 1 / Math.sqrt(M * M + d * d + m * m); (M *= o), (d *= o), (m *= o); let x = y * m - L * d, z = L * M - c * m, R = c * d - y * M; (o = Math.sqrt(x * x + z * z + R * R)), o ? ((o = 1 / o), (x *= o), (z *= o), (R *= o)) : ((x = 0), (z = 0), (R = 0)); let V = d * R - m * z, w = m * x - M * R, g = M * z - d * x; return ( (o = Math.sqrt(V * V + w * w + g * g)), o ? ((o = 1 / o), (V *= o), (w *= o), (g *= o)) : ((V = 0), (w = 0), (g = 0)), (e[0] = x), (e[1] = V), (e[2] = M), (e[3] = 0), (e[4] = z), (e[5] = w), (e[6] = d), (e[7] = 0), (e[8] = R), (e[9] = g), (e[10] = m), (e[11] = 0), (e[12] = -(x * a + z * s + R * i)), (e[13] = -(V * a + w * s + g * i)), (e[14] = -(M * a + d * s + m * i)), (e[15] = 1), e ); } static targetTo(e, t, n, r) { let a = t[0], s = t[1], i = t[2], c = r[0], y = r[1], L = r[2], k = a - n[0], l = s - n[1], b = i - n[2], M = k * k + l * l + b * b; M > 0 && ((M = 1 / Math.sqrt(M)), (k *= M), (l *= M), (b *= M)); let d = y * b - L * l, m = L * k - c * b, o = c * l - y * k; return ( (M = d * d + m * m + o * o), M > 0 && ((M = 1 / Math.sqrt(M)), (d *= M), (m *= M), (o *= M)), (e[0] = d), (e[1] = m), (e[2] = o), (e[3] = 0), (e[4] = l * o - b * m), (e[5] = b * d - k * o), (e[6] = k * m - l * d), (e[7] = 0), (e[8] = k), (e[9] = l), (e[10] = b), (e[11] = 0), (e[12] = a), (e[13] = s), (e[14] = i), (e[15] = 1), e ); } static frob(e) { return Math.sqrt( e[0] * e[0] + e[1] * e[1] + e[2] * e[2] + e[3] * e[3] + e[4] * e[4] + e[5] * e[5] + e[6] * e[6] + e[7] * e[7] + e[8] * e[8] + e[9] * e[9] + e[10] * e[10] + e[11] * e[11] + e[12] * e[12] + e[13] * e[13] + e[14] * e[14] + e[15] * e[15], ); } static add(e, t, n) { return ( (e[0] = t[0] + n[0]), (e[1] = t[1] + n[1]), (e[2] = t[2] + n[2]), (e[3] = t[3] + n[3]), (e[4] = t[4] + n[4]), (e[5] = t[5] + n[5]), (e[6] = t[6] + n[6]), (e[7] = t[7] + n[7]), (e[8] = t[8] + n[8]), (e[9] = t[9] + n[9]), (e[10] = t[10] + n[10]), (e[11] = t[11] + n[11]), (e[12] = t[12] + n[12]), (e[13] = t[13] + n[13]), (e[14] = t[14] + n[14]), (e[15] = t[15] + n[15]), e ); } static subtract(e, t, n) { return ( (e[0] = t[0] - n[0]), (e[1] = t[1] - n[1]), (e[2] = t[2] - n[2]), (e[3] = t[3] - n[3]), (e[4] = t[4] - n[4]), (e[5] = t[5] - n[5]), (e[6] = t[6] - n[6]), (e[7] = t[7] - n[7]), (e[8] = t[8] - n[8]), (e[9] = t[9] - n[9]), (e[10] = t[10] - n[10]), (e[11] = t[11] - n[11]), (e[12] = t[12] - n[12]), (e[13] = t[13] - n[13]), (e[14] = t[14] - n[14]), (e[15] = t[15] - n[15]), e ); } static sub(e, t, n) { return e; } static multiplyScalar(e, t, n) { return ( (e[0] = t[0] * n), (e[1] = t[1] * n), (e[2] = t[2] * n), (e[3] = t[3] * n), (e[4] = t[4] * n), (e[5] = t[5] * n), (e[6] = t[6] * n), (e[7] = t[7] * n), (e[8] = t[8] * n), (e[9] = t[9] * n), (e[10] = t[10] * n), (e[11] = t[11] * n), (e[12] = t[12] * n), (e[13] = t[13] * n), (e[14] = t[14] * n), (e[15] = t[15] * n), e ); } static multiplyScalarAndAdd(e, t, n, r) { return ( (e[0] = t[0] + n[0] * r), (e[1] = t[1] + n[1] * r), (e[2] = t[2] + n[2] * r), (e[3] = t[3] + n[3] * r), (e[4] = t[4] + n[4] * r), (e[5] = t[5] + n[5] * r), (e[6] = t[6] + n[6] * r), (e[7] = t[7] + n[7] * r), (e[8] = t[8] + n[8] * r), (e[9] = t[9] + n[9] * r), (e[10] = t[10] + n[10] * r), (e[11] = t[11] + n[11] * r), (e[12] = t[12] + n[12] * r), (e[13] = t[13] + n[13] * r), (e[14] = t[14] + n[14] * r), (e[15] = t[15] + n[15] * r), e ); } static exactEquals(e, t) { return ( e[0] === t[0] && e[1] === t[1] && e[2] === t[2] && e[3] === t[3] && e[4] === t[4] && e[5] === t[5] && e[6] === t[6] && e[7] === t[7] && e[8] === t[8] && e[9] === t[9] && e[10] === t[10] && e[11] === t[11] && e[12] === t[12] && e[13] === t[13] && e[14] === t[14] && e[15] === t[15] ); } static equals(e, t) { let n = e[0], r = e[1], a = e[2], s = e[3], i = e[4], c = e[5], y = e[6], L = e[7], k = e[8], l = e[9], b = e[10], M = e[11], d = e[12], m = e[13], o = e[14], x = e[15], z = t[0], R = t[1], V = t[2], w = t[3], g = t[4], T = t[5], E = t[6], F = t[7], f = t[8], N = t[9], B = t[10], D = t[11], Q = t[12], Z = t[13], W = t[14], U = t[15]; return ( Math.abs(n - z) <= 1e-6 * Math.max(1, Math.abs(n), Math.abs(z)) && Math.abs(r - R) <= 1e-6 * Math.max(1, Math.abs(r), Math.abs(R)) && Math.abs(a - V) <= 1e-6 * Math.max(1, Math.abs(a), Math.abs(V)) && Math.abs(s - w) <= 1e-6 * Math.max(1, Math.abs(s), Math.abs(w)) && Math.abs(i - g) <= 1e-6 * Math.max(1, Math.abs(i), Math.abs(g)) && Math.abs(c - T) <= 1e-6 * Math.max(1, Math.abs(c), Math.abs(T)) && Math.abs(y - E) <= 1e-6 * Math.max(1, Math.abs(y), Math.abs(E)) && Math.abs(L - F) <= 1e-6 * Math.max(1, Math.abs(L), Math.abs(F)) && Math.abs(k - f) <= 1e-6 * Math.max(1, Math.abs(k), Math.abs(f)) && Math.abs(l - N) <= 1e-6 * Math.max(1, Math.abs(l), Math.abs(N)) && Math.abs(b - B) <= 1e-6 * Math.max(1, Math.abs(b), Math.abs(B)) && Math.abs(M - D) <= 1e-6 * Math.max(1, Math.abs(M), Math.abs(D)) && Math.abs(d - Q) <= 1e-6 * Math.max(1, Math.abs(d), Math.abs(Q)) && Math.abs(m - Z) <= 1e-6 * Math.max(1, Math.abs(m), Math.abs(Z)) && Math.abs(o - W) <= 1e-6 * Math.max(1, Math.abs(o), Math.abs(W)) && Math.abs(x - U) <= 1e-6 * Math.max(1, Math.abs(x), Math.abs(U)) ); } static str(e) { return `Mat4(${e.join(', ')})`; } }, Y = new Float32Array(3); O.prototype.mul = O.prototype.multiply; O.sub = O.subtract; O.mul = O.multiply; O.frustum = O.frustumNO; O.perspective = O.perspectiveNO; O.ortho = O.orthoNO; var le = O; var A = class h extends Float32Array { static BYTE_LENGTH = 3 * Float32Array.BYTES_PER_ELEMENT; constructor(...e) { switch (e.length) { case 3: super(e); break; case 2: super(e[0], e[1], 3); break; case 1: { let t = e[0]; typeof t == 'number' ? super([t, t, t]) : super(t, 0, 3); break; } default: super(3); break; } } get x() { return this[0]; } set x(e) { this[0] = e; } get y() { return this[1]; } set y(e) { this[1] = e; } get z() { return this[2]; } set z(e) { this[2] = e; } get r() { return this[0]; } set r(e) { this[0] = e; } get g() { return this[1]; } set g(e) { this[1] = e; } get b() { return this[2]; } set b(e) { this[2] = e; } get magnitude() { let e = this[0], t = this[1], n = this[2]; return Math.sqrt(e * e + t * t + n * n); } get mag() { return this.magnitude; } get squaredMagnitude() { let e = this[0], t = this[1], n = this[2]; return e * e + t * t + n * n; } get sqrMag() { return this.squaredMagnitude; } get str() { return h.str(this); } copy(e) { return this.set(e), this; } add(e) { return (this[0] += e[0]), (this[1] += e[1]), (this[2] += e[2]), this; } subtract(e) { return (this[0] -= e[0]), (this[1] -= e[1]), (this[2] -= e[2]), this; } sub(e) { return this; } multiply(e) { return (this[0] *= e[0]), (this[1] *= e[1]), (this[2] *= e[2]), this; } mul(e) { return this; } divide(e) { return (this[0] /= e[0]), (this[1] /= e[1]), (this[2] /= e[2]), this; } div(e) { return this; } scale(e) { return (this[0] *= e), (this[1] *= e), (this[2] *= e), this; } scaleAndAdd(e, t) { return ( (this[0] += e[0] * t), (this[1] += e[1] * t), (this[2] += e[2] * t), this ); } distance(e) { return h.distance(this, e); } dist(e) { return 0; } squaredDistance(e) { return h.squaredDistance(this, e); } sqrDist(e) { return 0; } negate() { return (this[0] *= -1), (this[1] *= -1), (this[2] *= -1), this; } invert() { return ( (this[0] = 1 / this[0]), (this[1] = 1 / this[1]), (this[2] = 1 / this[2]), this ); } abs() { return ( (this[0] = Math.abs(this[0])), (this[1] = Math.abs(this[1])), (this[2] = Math.abs(this[2])), this ); } dot(e) { return this[0] * e[0] + this[1] * e[1] + this[2] * e[2]; } normalize() { return h.normalize(this, this); } static create() { return new h(); } static clone(e) { return new h(e); } static magnitude(e) { let t = e[0], n = e[1], r = e[2]; return Math.sqrt(t * t + n * n + r * r); } static mag(e) { return 0; } static length(e) { return 0; } static len(e) { return 0; } static fromValues(e, t, n) { return new h(e, t, n); } static copy(e, t) { return (e[0] = t[0]), (e[1] = t[1]), (e[2] = t[2]), e; } static set(e, t, n, r) { return (e[0] = t), (e[1] = n), (e[2] = r), e; } static add(e, t, n) { return ( (e[0] = t[0] + n[0]), (e[1] = t[1] + n[1]), (e[2] = t[2] + n[2]), e ); } static subtract(e, t, n) { return ( (e[0] = t[0] - n[0]), (e[1] = t[1] - n[1]), (e[2] = t[2] - n[2]), e ); } static sub(e, t, n) { return [0, 0, 0]; } static multiply(e, t, n) { return ( (e[0] = t[0] * n[0]), (e[1] = t[1] * n[1]), (e[2] = t[2] * n[2]), e ); } static mul(e, t, n) { return [0, 0, 0]; } static divide(e, t, n) { return ( (e[0] = t[0] / n[0]), (e[1] = t[1] / n[1]), (e[2] = t[2] / n[2]), e ); } static div(e, t, n) { return [0, 0, 0]; } static ceil(e, t) { return ( (e[0] = Math.ceil(t[0])), (e[1] = Math.ceil(t[1])), (e[2] = Math.ceil(t[2])), e ); } static floor(e, t) { return ( (e[0] = Math.floor(t[0])), (e[1] = Math.floor(t[1])), (e[2] = Math.floor(t[2])), e ); } static min(e, t, n) { return ( (e[0] = Math.min(t[0], n[0])), (e[1] = Math.min(t[1], n[1])), (e[2] = Math.min(t[2], n[2])), e ); } static max(e, t, n) { return ( (e[0] = Math.max(t[0], n[0])), (e[1] = Math.max(t[1], n[1])), (e[2] = Math.max(t[2], n[2])), e ); } static round(e, t) { return ( (e[0] = Math.round(t[0])), (e[1] = Math.round(t[1])), (e[2] = Math.round(t[2])), e ); } static scale(e, t, n) { return (e[0] = t[0] * n), (e[1] = t[1] * n), (e[2] = t[2] * n), e; } static scaleAndAdd(e, t, n, r) { return ( (e[0] = t[0] + n[0] * r), (e[1] = t[1] + n[1] * r), (e[2] = t[2] + n[2] * r), e ); } static distance(e, t) { let n = t[0] - e[0], r = t[1] - e[1], a = t[2] - e[2]; return Math.sqrt(n * n + r * r + a * a); } static dist(e, t) { return 0; } static squaredDistance(e, t) { let n = t[0] - e[0], r = t[1] - e[1], a = t[2] - e[2]; return n * n + r * r + a * a; } static sqrDist(e, t) { return 0; } static squaredLength(e) { let t = e[0], n = e[1], r = e[2]; return t * t + n * n + r * r; } static sqrLen(e, t) { return 0; } static negate(e, t) { return (e[0] = -t[0]), (e[1] = -t[1]), (e[2] = -t[2]), e; } static inverse(e, t) { return (e[0] = 1 / t[0]), (e[1] = 1 / t[1]), (e[2] = 1 / t[2]), e; } static abs(e, t) { return ( (e[0] = Math.abs(t[0])), (e[1] = Math.abs(t[1])), (e[2] = Math.abs(t[2])), e ); } static normalize(e, t) { let n = t[0], r = t[1], a = t[2], s = n * n + r * r + a * a; return ( s > 0 && (s = 1 / Math.sqrt(s)), (e[0] = t[0] * s), (e[1] = t[1] * s), (e[2] = t[2] * s), e ); } static dot(e, t) { return e[0] * t[0] + e[1] * t[1] + e[2] * t[2]; } static cross(e, t, n) { let r = t[0], a = t[1], s = t[2], i = n[0], c = n[1], y = n[2]; return ( (e[0] = a * y - s * c), (e[1] = s * i - r * y), (e[2] = r * c - a * i), e ); } static lerp(e, t, n, r) { let a = t[0], s = t[1], i = t[2]; return ( (e[0] = a + r * (n[0] - a)), (e[1] = s + r * (n[1] - s)), (e[2] = i + r * (n[2] - i)), e ); } static slerp(e, t, n, r) { let a = Math.acos(Math.min(Math.max(h.dot(t, n), -1), 1)), s = Math.sin(a), i = Math.sin((1 - r) * a) / s, c = Math.sin(r * a) / s; return ( (e[0] = i * t[0] + c * n[0]), (e[1] = i * t[1] + c * n[1]), (e[2] = i * t[2] + c * n[2]), e ); } static hermite(e, t, n, r, a, s) { let i = s * s, c = i * (2 * s - 3) + 1, y = i * (s - 2) + s, L = i * (s - 1), k = i * (3 - 2 * s); return ( (e[0] = t[0] * c + n[0] * y + r[0] * L + a[0] * k), (e[1] = t[1] * c + n[1] * y + r[1] * L + a[1] * k), (e[2] = t[2] * c + n[2] * y + r[2] * L + a[2] * k), e ); } static bezier(e, t, n, r, a, s) { let i = 1 - s, c = i * i, y = s * s, L = c * i, k = 3 * s * c, l = 3 * y * i, b = y * s; return ( (e[0] = t[0] * L + n[0] * k + r[0] * l + a[0] * b), (e[1] = t[1] * L + n[1] * k + r[1] * l + a[1] * b), (e[2] = t[2] * L + n[2] * k + r[2] * l + a[2] * b), e ); } static random(e, t) { t = t === void 0 ? 1 : t; let n = Math.random() * 2 * Math.PI, r = Math.random() * 2 - 1, a = Math.sqrt(1 - r * r) * t; return ( (e[0] = Math.cos(n) * a), (e[1] = Math.sin(n) * a), (e[2] = r * t), e ); } static transformMat4(e, t, n) { let r = t[0], a = t[1], s = t[2], i = n[3] * r + n[7] * a + n[11] * s + n[15] || 1; return ( (e[0] = (n[0] * r + n[4] * a + n[8] * s + n[12]) / i), (e[1] = (n[1] * r + n[5] * a + n[9] * s + n[13]) / i), (e[2] = (n[2] * r + n[6] * a + n[10] * s + n[14]) / i), e ); } static transformMat3(e, t, n) { let r = t[0], a = t[1], s = t[2]; return ( (e[0] = r * n[0] + a * n[3] + s * n[6]), (e[1] = r * n[1] + a * n[4] + s * n[7]), (e[2] = r * n[2] + a * n[5] + s * n[8]), e ); } static transformQuat(e, t, n) { let r = n[0], a = n[1], s = n[2], i = n[3] * 2, c = t[0], y = t[1], L = t[2], k = a * L - s * y, l = s * c - r * L, b = r * y - a * c, M = (a * b - s * l) * 2, d = (s * k - r * b) * 2, m = (r * l - a * k) * 2; return ( (e[0] = c + k * i + M), (e[1] = y + l * i + d), (e[2] = L + b * i + m), e ); } static rotateX(e, t, n, r) { let a = n[1], s = n[2], i = t[1] - a, c = t[2] - s; return ( (e[0] = t[0]), (e[1] = i * Math.cos(r) - c * Math.sin(r) + a), (e[2] = i * Math.sin(r) + c * Math.cos(r) + s), e ); } static rotateY(e, t, n, r) { let a = n[0], s = n[2], i = t[0] - a, c = t[2] - s; return ( (e[0] = c * Math.sin(r) + i * Math.cos(r) + a), (e[1] = t[1]), (e[2] = c * Math.cos(r) - i * Math.sin(r) + s), e ); } static rotateZ(e, t, n, r) { let a = n[0], s = n[1], i = t[0] - a, c = t[1] - s; return ( (e[0] = i * Math.cos(r) - c * Math.sin(r) + a), (e[1] = i * Math.sin(r) + c * Math.cos(r) + s), (e[2] = n[2]), e ); } static angle(e, t) { let n = e[0], r = e[1], a = e[2], s = t[0], i = t[1], c = t[2], y = Math.sqrt((n * n + r * r + a * a) * (s * s + i * i + c * c)), L = y && h.dot(e, t) / y; return Math.acos(Math.min(Math.max(L, -1), 1)); } static zero(e) { return (e[0] = 0), (e[1] = 0), (e[2] = 0), e; } static str(e) { return `Vec3(${e.join(', ')})`; } static exactEquals(e, t) { return e[0] === t[0] && e[1] === t[1] && e[2] === t[2]; } static equals(e, t) { let n = e[0], r = e[1], a = e[2], s = t[0], i = t[1], c = t[2]; return ( Math.abs(n - s) <= 1e-6 * Math.max(1, Math.abs(n), Math.abs(s)) && Math.abs(r - i) <= 1e-6 * Math.max(1, Math.abs(r), Math.abs(i)) && Math.abs(a - c) <= 1e-6 * Math.max(1, Math.abs(a), Math.abs(c)) ); } }; A.prototype.sub = A.prototype.subtract; A.prototype.mul = A.prototype.multiply; A.prototype.div = A.prototype.divide; A.prototype.dist = A.prototype.distance; A.prototype.sqrDist = A.prototype.squaredDistance; A.sub = A.subtract; A.mul = A.multiply; A.div = A.divide; A.dist = A.distance; A.sqrDist = A.squaredDistance; A.sqrLen = A.squaredLength; A.mag = A.magnitude; A.length = A.magnitude; A.len = A.magnitude; var Me = A; var q = class h extends Float32Array { static BYTE_LENGTH = 4 * Float32Array.BYTES_PER_ELEMENT; constructor(...e) { switch (e.length) { case 4: super(e); break; case 2: super(e[0], e[1], 4); break; case 1: { let t = e[0]; typeof t == 'number' ? super([t, t, t, t]) : super(t, 0, 4); break; } default: super(4); break; } } get x() { return this[0]; } set x(e) { this[0] = e; } get y() { return this[1]; } set y(e) { this[1] = e; } get z() { return this[2]; } set z(e) { this[2] = e; } get w() { return this[3]; } set w(e) { this[3] = e; } get r() { return this[0]; } set r(e) { this[0] = e; } get g() { return this[1]; } set g(e) { this[1] = e; } get b() { return this[2]; } set b(e) { this[2] = e; } get a() { return this[3]; } set a(e) { this[3] = e; } get magnitude() { let e = this[0], t = this[1], n = this[2], r = this[3]; return Math.sqrt(e * e + t * t + n * n + r * r); } get mag() { return this.magnitude; } get str() { return h.str(this); } copy(e) { return super.set(e), this; } add(e) { return ( (this[0] += e[0]), (this[1] += e[1]), (this[2] += e[2]), (this[3] += e[3]), this ); } subtract(e) { return ( (this[0] -= e[0]), (this[1] -= e[1]), (this[2] -= e[2]), (this[3] -= e[3]), this ); } sub(e) { return this; } multiply(e) { return ( (this[0] *= e[0]), (this[1] *= e[1]), (this[2] *= e[2]), (this[3] *= e[3]), this ); } mul(e) { return this; } divide(e) { return ( (this[0] /= e[0]), (this[1] /= e[1]), (this[2] /= e[2]), (this[3] /= e[3]), this ); } div(e) { return this; } scale(e) { return ( (this[0] *= e), (this[1] *= e), (this[2] *= e), (this[3] *= e), this ); } scaleAndAdd(e, t) { return ( (this[0] += e[0] * t), (this[1] += e[1] * t), (this[2] += e[2] * t), (this[3] += e[3] * t), this ); } distance(e) { return h.distance(this, e); } dist(e) { return 0; } squaredDistance(e) { return h.squaredDistance(this, e); } sqrDist(e) { return 0; } negate() { return ( (this[0] *= -1), (this[1] *= -1), (this[2] *= -1), (this[3] *= -1), this ); } invert() { return ( (this[0] = 1 / this[0]), (this[1] = 1 / this[1]), (this[2] = 1 / this[2]), (this[3] = 1 / this[3]), this ); } abs() { return ( (this[0] = Math.abs(this[0])), (this[1] = Math.abs(this[1])), (this[2] = Math.abs(this[2])), (this[3] = Math.abs(this[3])), this ); } dot(e) { return ( this[0] * e[0] + this[1] * e[1] + this[2] * e[2] + this[3] * e[3] ); } normalize() { return h.normalize(this, this); } static create() { return new h(); } static clone(e) { return new h(e); } static fromValues(e, t, n, r) { return new h(e, t, n, r); } static copy(e, t) { return (e[0] = t[0]), (e[1] = t[1]), (e[2] = t[2]), (e[3] = t[3]), e; } static set(e, t, n, r, a) { return (e[0] = t), (e[1] = n), (e[2] = r), (e[3] = a), e; } static add(e, t, n) { return ( (e[0] = t[0] + n[0]), (e[1] = t[1] + n[1]), (e[2] = t[2] + n[2]), (e[3] = t[3] + n[3]), e ); } static subtract(e, t, n) { return ( (e[0] = t[0] - n[0]), (e[1] = t[1] - n[1]), (e[2] = t[2] - n[2]), (e[3] = t[3] - n[3]), e ); } static sub(e, t, n) { return e; } static multiply(e, t, n) { return ( (e[0] = t[0] * n[0]), (e[1] = t[1] * n[1]), (e[2] = t[2] * n[2]), (e[3] = t[3] * n[3]), e ); } static mul(e, t, n) { return e; } static divide(e, t, n) { return ( (e[0] = t[0] / n[0]), (e[1] = t[1] / n[1]), (e[2] = t[2] / n[2]), (e[3] = t[3] / n[3]), e ); } static div(e, t, n) { return e; } static ceil(e, t) { return ( (e[0] = Math.ceil(t[0])), (e[1] = Math.ceil(t[1])), (e[2] = Math.ceil(t[2])), (e[3] = Math.ceil(t[3])), e ); } static floor(e, t) { return ( (e[0] = Math.floor(t[0])), (e[1] = Math.floor(t[1])), (e[2] = Math.floor(t[2])), (e[3] = Math.floor(t[3])), e ); } static min(e, t, n) { return ( (e[0] = Math.min(t[0], n[0])), (e[1] = Math.min(t[1], n[1])), (e[2] = Math.min(t[2], n[2])), (e[3] = Math.min(t[3], n[3])), e ); } static max(e, t, n) { return ( (e[0] = Math.max(t[0], n[0])), (e[1] = Math.max(t[1], n[1])), (e[2] = Math.max(t[2], n[2])), (e[3] = Math.max(t[3], n[3])), e ); } static round(e, t) { return ( (e[0] = Math.round(t[0])), (e[1] = Math.round(t[1])), (e[2] = Math.round(t[2])), (e[3] = Math.round(t[3])), e ); } static scale(e, t, n) { return ( (e[0] = t[0] * n), (e[1] = t[1] * n), (e[2] = t[2] * n), (e[3] = t[3] * n), e ); } static scaleAndAdd(e, t, n, r) { return ( (e[0] = t[0] + n[0] * r), (e[1] = t[1] + n[1] * r), (e[2] = t[2] + n[2] * r), (e[3] = t[3] + n[3] * r), e ); } static distance(e, t) { let n = t[0] - e[0], r = t[1] - e[1], a = t[2] - e[2], s = t[3] - e[3]; return Math.hypot(n, r, a, s); } static dist(e, t) { return 0; } static squaredDistance(e, t) { let n = t[0] - e[0], r = t[1] - e[1], a = t[2] - e[2], s = t[3] - e[3]; return n * n + r * r + a * a + s * s; } static sqrDist(e, t) { return 0; } static magnitude(e) { let t = e[0], n = e[1], r = e[2], a = e[3]; return Math.sqrt(t * t + n * n + r * r + a * a); } static mag(e) { return 0; } static length(e) { return 0; } static len(e) { return 0; } static squaredLength(e) { let t = e[0], n = e[1], r = e[2], a = e[3]; return t * t + n * n + r * r + a * a; } static sqrLen(e) { return 0; } static negate(e, t) { return ( (e[0] = -t[0]), (e[1] = -t[1]), (e[2] = -t[2]), (e[3] = -t[3]), e ); } static inverse(e, t) { return ( (e[0] = 1 / t[0]), (e[1] = 1 / t[1]), (e[2] = 1 / t[2]), (e[3] = 1 / t[3]), e ); } static abs(e, t) { return ( (e[0] = Math.abs(t[0])), (e[1] = Math.abs(t[1])), (e[2] = Math.abs(t[2])), (e[3] = Math.abs(t[3])), e ); } static normalize(e, t) { let n = t[0], r = t[1], a = t[2], s = t[3], i = n * n + r * r + a * a + s * s; return ( i > 0 && (i = 1 / Math.sqrt(i)), (e[0] = n * i), (e[1] = r * i), (e[2] = a * i), (e[3] = s * i), e ); } static dot(e, t) { return e[0] * t[0] + e[1] * t[1] + e[2] * t[2] + e[3] * t[3]; } static cross(e, t, n, r) { let a = n[0] * r[1] - n[1] * r[0], s = n[0] * r[2] - n[2] * r[0], i = n[0] * r[3] - n[3] * r[0], c = n[1] * r[2] - n[2] * r[1], y = n[1] * r[3] - n[3] * r[1], L = n[2] * r[3] - n[3] * r[2], k = t[0], l = t[1], b = t[2], M = t[3]; return ( (e[0] = l * L - b * y + M * c), (e[1] = -(k * L) + b * i - M * s), (e[2] = k * y - l * i + M * a), (e[3] = -(k * c) + l * s - b * a), e ); } static lerp(e, t, n, r) { let a = t[0], s = t[1], i = t[2], c = t[3]; return ( (e[0] = a + r * (n[0] - a)), (e[1] = s + r * (n[1] - s)), (e[2] = i + r * (n[2] - i)), (e[3] = c + r * (n[3] - c)), e ); } static random(e, t) { t = t || 1; var n, r, a, s, i, c; do (n = Math.random() * 2 - 1), (r = Math.random() * 2 - 1), (i = n * n + r * r); while (i >= 1); do (a = Math.random() * 2 - 1), (s = Math.random() * 2 - 1), (c = a * a + s * s); while (c >= 1); var y = Math.sqrt((1 - i) / c); return ( (e[0] = t * n), (e[1] = t * r), (e[2] = t * a * y), (e[3] = t * s * y), e ); } static transformMat4(e, t, n) { let r = t[0], a = t[1], s = t[2], i = t[3]; return ( (e[0] = n[0] * r + n[4] * a + n[8] * s + n[12] * i), (e[1] = n[1] * r + n[5] * a + n[9] * s + n[13] * i), (e[2] = n[2] * r + n[6] * a + n[10] * s + n[14] * i), (e[3] = n[3] * r + n[7] * a + n[11] * s + n[15] * i), e ); } static transformQuat(e, t, n) { let r = t[0], a = t[1], s = t[2], i = n[0], c = n[1], y = n[2], L = n[3], k = L * r + c * s - y * a, l = L * a + y * r - i * s, b = L * s + i * a - c * r, M = -i * r - c * a - y * s; return ( (e[0] = k * L + M * -i + l * -y - b * -c), (e[1] = l * L + M * -c + b * -i - k * -y), (e[2] = b * L + M * -y + k * -c - l * -i), (e[3] = t[3]), e ); } static zero(e) { return (e[0] = 0), (e[1] = 0), (e[2] = 0), (e[3] = 0), e; } static str(e) { return `Vec4(${e.join(', ')})`; } static exactEquals(e, t) { return e[0] === t[0] && e[1] === t[1] && e[2] === t[2] && e[3] === t[3]; } static equals(e, t) { let n = e[0], r = e[1], a = e[2], s = e[3], i = t[0], c = t[1], y = t[2], L = t[3]; return ( Math.abs(n - i) <= 1e-6 * Math.max(1, Math.abs(n), Math.abs(i)) && Math.abs(r - c) <= 1e-6 * Math.max(1, Math.abs(r), Math.abs(c)) && Math.abs(a - y) <= 1e-6 * Math.max(1, Math.abs(a), Math.abs(y)) && Math.abs(s - L) <= 1e-6 * Math.max(1, Math.abs(s), Math.abs(L)) ); } }; q.prototype.sub = q.prototype.subtract; q.prototype.mul = q.prototype.multiply; q.prototype.div = q.prototype.divide; q.prototype.dist = q.prototype.distance; q.prototype.sqrDist = q.prototype.squaredDistance; q.sub = q.subtract; q.mul = q.multiply; q.div = q.divide; q.dist = q.distance; q.sqrDist = q.squaredDistance; q.sqrLen = q.squaredLength; q.mag = q.magnitude; q.length = q.magnitude; q.len = q.magnitude; var be = q; var I = class h extends Float32Array { static BYTE_LENGTH = 4 * Float32Array.BYTES_PER_ELEMENT; constructor(...e) { switch (e.length) { case 4: super(e); break; case 2: super(e[0], e[1], 4); break; case 1: { let t = e[0]; typeof t == 'number' ? super([t, t, t, t]) : super(t, 0, 4); break; } default: super(4), (this[3] = 1); break; } } get x() { return this[0]; } set x(e) { this[0] = e; } get y() { return this[1]; } set y(e) { this[1] = e; } get z() { return this[2]; } set z(e) { this[2] = e; } get w() { return this[3]; } set w(e) { this[3] = e; } get magnitude() { let e = this[0], t = this[1], n = this[2], r = this[3]; return Math.sqrt(e * e + t * t + n * n + r * r); } get mag() { return this.magnitude; } get str() { return h.str(this); } copy(e) { return super.set(e), this; } identity() { return ( (this[0] = 0), (this[1] = 0), (this[2] = 0), (this[3] = 1), this ); } multiply(e) { return h.multiply(this, this, e); } mul(e) { return this; } rotateX(e) { return h.rotateX(this, this, e); } rotateY(e) { return h.rotateY(this, this, e); } rotateZ(e) { return h.rotateZ(this, this, e); } invert() { return h.invert(this, this); } scale(e) { return ( (this[0] *= e), (this[1] *= e), (this[2] *= e), (this[3] *= e), this ); } dot(e) { return h.dot(this, e); } static create() { return new h(); } static identity(e) { return (e[0] = 0), (e[1] = 0), (e[2] = 0), (e[3] = 1), e; } static setAxisAngle(e, t, n) { n = n * 0.5; let r = Math.sin(n); return ( (e[0] = r * t[0]), (e[1] = r * t[1]), (e[2] = r * t[2]), (e[3] = Math.cos(n)), e ); } static getAxisAngle(e, t) { let n = Math.acos(t[3]) * 2, r = Math.sin(n / 2); return ( r > 1e-6 ? ((e[0] = t[0] / r), (e[1] = t[1] / r), (e[2] = t[2] / r)) : ((e[0] = 1), (e[1] = 0), (e[2] = 0)), n ); } static getAngle(e, t) { let n = h.dot(e, t); return Math.acos(2 * n * n - 1); } static multiply(e, t, n) { let r = t[0], a = t[1], s = t[2], i = t[3], c = n[0], y = n[1], L = n[2], k = n[3]; return ( (e[0] = r * k + i * c + a * L - s * y), (e[1] = a * k + i * y + s * c - r * L), (e[2] = s * k + i * L + r * y - a * c), (e[3] = i * k - r * c - a * y - s * L), e ); } static rotateX(e, t, n) { n *= 0.5; let r = t[0], a = t[1], s = t[2], i = t[3], c = Math.sin(n), y = Math.cos(n); return ( (e[0] = r * y + i * c), (e[1] = a * y + s * c), (e[2] = s * y - a * c), (e[3] = i * y - r * c), e ); } static rotateY(e, t, n) { n *= 0.5; let r = t[0], a = t[1], s = t[2], i = t[3], c = Math.sin(n), y = Math.cos(n); return ( (e[0] = r * y - s * c), (e[1] = a * y + i * c), (e[2] = s * y + r * c), (e[3] = i * y - a * c), e ); } static rotateZ(e, t, n) { n *= 0.5; let r = t[0], a = t[1], s = t[2], i = t[3], c = Math.sin(n), y = Math.cos(n); return ( (e[0] = r * y + a * c), (e[1] = a * y - r * c), (e[2] = s * y + i * c), (e[3] = i * y - s * c), e ); } static calculateW(e, t) { let n = t[0], r = t[1], a = t[2]; return ( (e[0] = n), (e[1] = r), (e[2] = a), (e[3] = Math.sqrt(Math.abs(1 - n * n - r * r - a * a))), e ); } static exp(e, t) { let n = t[0], r = t[1], a = t[2], s = t[3], i = Math.sqrt(n * n + r * r + a * a), c = Math.exp(s), y = i > 0 ? (c * Math.sin(i)) / i : 0; return ( (e[0] = n * y), (e[1] = r * y), (e[2] = a * y), (e[3] = c * Math.cos(i)), e ); } static ln(e, t) { let n = t[0], r = t[1], a = t[2], s = t[3], i = Math.sqrt(n * n + r * r + a * a), c = i > 0 ? Math.atan2(i, s) / i : 0; return ( (e[0] = n * c), (e[1] = r * c), (e[2] = a * c), (e[3] = 0.5 * Math.log(n * n + r * r + a * a + s * s)), e ); } static pow(e, t, n) { return h.ln(e, t), h.scale(e, e, n), h.exp(e, e), e; } static slerp(e, t, n, r) { let a = t[0], s = t[1], i = t[2], c = t[3], y = n[0], L = n[1], k = n[2], l = n[3], b, M, d = a * y + s * L + i * k + c * l; if ( (d < 0 && ((d = -d), (y = -y), (L = -L), (k = -k), (l = -l)), 1 - d > 1e-6) ) { let m = Math.acos(d), o = Math.sin(m); (b = Math.sin((1 - r) * m) / o), (M = Math.sin(r * m) / o); } else (b = 1 - r), (M = r); return ( (e[0] = b * a + M * y), (e[1] = b * s + M * L), (e[2] = b * i + M * k), (e[3] = b * c + M * l), e ); } static random(e) { let t = Math.random(), n = Math.random(), r = Math.random(), a = Math.sqrt(1 - t), s = Math.sqrt(t); return ( (e[0] = a * Math.sin(2 * Math.PI * n)), (e[1] = a * Math.cos(2 * Math.PI * n)), (e[2] = s * Math.sin(2 * Math.PI * r)), (e[3] = s * Math.cos(2 * Math.PI * r)), e ); } static invert(e, t) { let n = t[0], r = t[1], a = t[2], s = t[3], i = n * n + r * r + a * a + s * s, c = i ? 1 / i : 0; return ( (e[0] = -n * c), (e[1] = -r * c), (e[2] = -a * c), (e[3] = s * c), e ); } static conjugate(e, t) { return ( (e[0] = -t[0]), (e[1] = -t[1]), (e[2] = -t[2]), (e[3] = t[3]), e ); } static fromMat3(e, t) { let n = t[0] + t[4] + t[8], r; if (n > 0) (r = Math.sqrt(n + 1)), (e[3] = 0.5 * r), (r = 0.5 / r), (e[0] = (t[5] - t[7]) * r), (e[1] = (t[6] - t[2]) * r), (e[2] = (t[1] - t[3]) * r); else { let a = 0; t[4] > t[0] && (a = 1), t[8] > t[a * 3 + a] && (a = 2); let s = (a + 1) % 3, i = (a + 2) % 3; (r = Math.sqrt(t[a * 3 + a] - t[s * 3 + s] - t[i * 3 + i] + 1)), (e[a] = 0.5 * r), (r = 0.5 / r), (e[3] = (t[s * 3 + i] - t[i * 3 + s]) * r), (e[s] = (t[s * 3 + a] + t[a * 3 + s]) * r), (e[i] = (t[i * 3 + a] + t[a * 3 + i]) * r); } return e; } static fromEuler(e, t, n, r, a = u) { let s = (0.5 * Math.PI) / 180; (t *= s), (n *= s), (r *= s); let i = Math.sin(t), c = Math.cos(t), y = Math.sin(n), L = Math.cos(n), k = Math.sin(r), l = Math.cos(r); switch (a) { case 'xyz': (e[0] = i * L * l + c * y * k), (e[1] = c * y * l - i * L * k), (e[2] = c * L * k + i * y * l), (e[3] = c * L * l - i * y * k); break; case 'xzy': (e[0] = i * L * l - c * y * k), (e[1] = c * y * l - i * L * k), (e[2] = c * L * k + i * y * l), (e[3] = c * L * l + i * y * k); break; case 'yxz': (e[0] = i * L * l + c * y * k), (e[1] = c * y * l - i * L * k), (e[2] = c * L * k - i * y * l), (e[3] = c * L * l + i * y * k); break; case 'yzx': (e[0] = i * L * l + c * y * k), (e[1] = c * y * l + i * L * k), (e[2] = c * L * k - i * y * l), (e[3] = c * L * l - i * y * k); break; case 'zxy': (e[0] = i * L * l - c * y * k), (e[1] = c * y * l + i * L * k), (e[2] = c * L * k + i * y * l), (e[3] = c * L * l - i * y * k); break; case 'zyx': (e[0] = i * L * l - c * y * k), (e[1] = c * y * l + i * L * k), (e[2] = c * L * k - i * y * l), (e[3] = c * L * l + i * y * k); break; default: throw new Error('Unknown angle order ' + a); } return e; } static str(e) { return `Quat(${e.join(', ')})`; } static clone(e) { return new h(e); } static fromValues(e, t, n, r) { return new h(e, t, n, r); } static copy(e, t) { return ( (e[0] = t[0]), (e[1] = t[1]), (e[2] = t[2]), (e[3] = t[3]), e ); } static set(e, t, n, r, a) { return e; } static add(e, t, n) { return e; } static mul(e, t, n) { return e; } static scale(e, t, n) { return ( (e[0] = t[0] * n), (e[1] = t[1] * n), (e[2] = t[2] * n), (e[3] = t[3] * n), e ); } static dot(e, t) { return e[0] * t[0] + e[1] * t[1] + e[2] * t[2] + e[3] * t[3]; } static lerp(e, t, n, r) { return e; } static magnitude(e) { return 0; } static mag(e) { return 0; } static length(e) { return 0; } static len(e) { return 0; } static squaredLength(e) { return 0; } static sqrLen(e) { return 0; } static normalize(e, t) { return e; } static exactEquals(e, t) { return !1; } static equals(e, t) { return !1; } static rotationTo(e, t, n) { let r = A.dot(t, n); return r < -0.999999 ? (A.cross(H, de, t), A.mag(H) < 1e-6 && A.cross(H, he, t), A.normalize(H, H), h.setAxisAngle(e, H, Math.PI), e) : r > 0.999999 ? ((e[0] = 0), (e[1] = 0), (e[2] = 0), (e[3] = 1), e) : (A.cross(H, t, n), (e[0] = H[0]), (e[1] = H[1]), (e[2] = H[2]), (e[3] = 1 + r), h.normalize(e, e)); } static sqlerp(e, t, n, r, a, s) { return ( h.slerp(re, t, a, s), h.slerp(ae, n, r, s), h.slerp(e, re, ae, 2 * s * (1 - s)), e ); } static setAxes(e, t, n, r) { return ( (G[0] = n[0]), (G[3] = n[1]), (G[6] = n[2]), (G[1] = r[0]), (G[4] = r[1]), (G[7] = r[2]), (G[2] = -t[0]), (G[5] = -t[1]), (G[8] = -t[2]), h.normalize(e, h.fromMat3(e, G)) ); } }, re = new Float32Array(4), ae = new Float32Array(4), G = new Float32Array(9), H = new Float32Array(3), de = new Float32Array([1, 0, 0]), he = new Float32Array([0, 1, 0]); I.set = q.set; I.add = q.add; I.lerp = q.lerp; I.normalize = q.normalize; I.squaredLength = q.squaredLength; I.sqrLen = q.squaredLength; I.exactEquals = q.exactEquals; I.equals = q.equals; I.magnitude = q.magnitude; I.prototype.mul = I.prototype.multiply; I.mul = I.multiply; I.mag = I.magnitude; I.length = I.magnitude; I.len = I.magnitude; var me = I; var P = class h extends Float32Array { static BYTE_LENGTH = 8 * Float32Array.BYTES_PER_ELEMENT; constructor(...e) { switch (e.length) { case 8: super(e); break; case 2: super(e[0], e[1], 8); break; case 1: { let t = e[0]; typeof t == 'number' ? super([t, t, t, t, t, t, t, t]) : super(t, 0, 8); break; } default: super(8), (this[3] = 1); break; } } get str() { return h.str(this); } copy(e) { return super.set(e), this; } static create() { return new h(); } static clone(e) { return new h(e); } static fromValues(e, t, n, r, a, s, i, c) { return new h(e, t, n, r, a, s, i, c); } static fromRotationTranslationValues(e, t, n, r, a, s, i) { let c = a * 0.5, y = s * 0.5, L = i * 0.5; return new h( e, t, n, r, c * r + y * n - L * t, y * r + L * e - c * n, L * r + c * t - y * e, -c * e - y * t - L * n, ); } static fromRotationTranslation(e, t, n) { let r = n[0] * 0.5, a = n[1] * 0.5, s = n[2] * 0.5, i = t[0], c = t[1], y = t[2], L = t[3]; return ( (e[0] = i), (e[1] = c), (e[2] = y), (e[3] = L), (e[4] = r * L + a * y - s * c), (e[5] = a * L + s * i - r * y), (e[6] = s * L + r * c - a * i), (e[7] = -r * i - a * c - s * y), e ); } static fromTranslation(e, t) { return ( (e[0] = 0), (e[1] = 0), (e[2] = 0), (e[3] = 1), (e[4] = t[0] * 0.5), (e[5] = t[1] * 0.5), (e[6] = t[2] * 0.5), (e[7] = 0), e ); } static fromRotation(e, t) { return ( (e[0] = t[0]), (e[1] = t[1]), (e[2] = t[2]), (e[3] = t[3]), (e[4] = 0), (e[5] = 0), (e[6] = 0), (e[7] = 0), e ); } static fromMat4(e, t) { return ( O.getRotation(se, t), O.getTranslation(ie, t), h.fromRotationTranslation(e, se, ie) ); } static copy(e, t) { return ( (e[0] = t[0]), (e[1] = t[1]), (e[2] = t[2]), (e[3] = t[3]), (e[4] = t[4]), (e[5] = t[5]), (e[6] = t[6]), (e[7] = t[7]), e ); } static identity(e) { return ( (e[0] = 0), (e[1] = 0), (e[2] = 0), (e[3] = 1), (e[4] = 0), (e[5] = 0), (e[6] = 0), (e[7] = 0), e ); } static set(e, t, n, r, a, s, i, c, y) { return ( (e[0] = t), (e[1] = n), (e[2] = r), (e[3] = a), (e[4] = s), (e[5] = i), (e[6] = c), (e[7] = y), e ); } static getReal(e, t) { return ( (e[0] = t[0]), (e[1] = t[1]), (e[2] = t[2]), (e[3] = t[3]), e ); } static getDual(e, t) { return ( (e[0] = t[4]), (e[1] = t[5]), (e[2] = t[6]), (e[3] = t[7]), e ); } static setReal(e, t) { return ( (e[0] = t[0]), (e[1] = t[1]), (e[2] = t[2]), (e[3] = t[3]), e ); } static setDual(e, t) { return ( (e[4] = t[0]), (e[5] = t[1]), (e[6] = t[2]), (e[7] = t[3]), e ); } static getTranslation(e, t) { let n = t[4], r = t[5], a = t[6], s = t[7], i = -t[0], c = -t[1], y = -t[2], L = t[3]; return ( (e[0] = (n * L + s * i + r * y - a * c) * 2), (e[1] = (r * L + s * c + a * i - n * y) * 2), (e[2] = (a * L + s * y + n * c - r * i) * 2), e ); } static translate(e, t, n) { let r = t[0], a = t[1], s = t[2], i = t[3], c = n[0] * 0.5, y = n[1] * 0.5, L = n[2] * 0.5, k = t[4], l = t[5], b = t[6], M = t[7]; return ( (e[0] = r), (e[1] = a), (e[2] = s), (e[3] = i), (e[4] = i * c + a * L - s * y + k), (e[5] = i * y + s * c - r * L + l), (e[6] = i * L + r * y - a * c + b), (e[7] = -r * c - a * y - s * L + M), e ); } static rotateX(e, t, n) { let r = -t[0], a = -t[1], s = -t[2], i = t[3], c = t[4], y = t[5], L = t[6], k = t[7], l = c * i + k * r + y * s - L * a, b = y * i + k * a + L * r - c * s, M = L * i + k * s + c * a - y * r, d = k * i - c * r - y * a - L * s; return ( I.rotateX(e, t, n), (r = e[0]), (a = e[1]), (s = e[2]), (i = e[3]), (e[4] = l * i + d * r + b * s - M * a), (e[5] = b * i + d * a + M * r - l * s), (e[6] = M * i + d * s + l * a - b * r), (e[7] = d * i - l * r - b * a - M * s), e ); } static rotateY(e, t, n) { let r = -t[0], a = -t[1], s = -t[2], i = t[3], c = t[4], y = t[5], L = t[6], k = t[7], l = c * i + k * r + y * s - L * a, b = y * i + k * a + L * r - c * s, M = L * i + k * s + c * a - y * r, d = k * i - c * r - y * a - L * s; return ( I.rotateY(e, t, n), (r = e[0]), (a = e[1]), (s = e[2]), (i = e[3]), (e[4] = l * i + d * r + b * s - M * a), (e[5] = b * i + d * a + M * r - l * s), (e[6] = M * i + d * s + l * a - b * r), (e[7] = d * i - l * r - b * a - M * s), e ); } static rotateZ(e, t, n) { let r = -t[0], a = -t[1], s = -t[2], i = t[3], c = t[4], y = t[5], L = t[6], k = t[7], l = c * i + k * r + y * s - L * a, b = y * i + k * a + L * r - c * s, M = L * i + k * s + c * a - y * r, d = k * i - c * r - y * a - L * s; return ( I.rotateZ(e, t, n), (r = e[0]), (a = e[1]), (s = e[2]), (i = e[3]), (e[4] = l * i + d * r + b * s - M * a), (e[5] = b * i + d * a + M * r - l * s), (e[6] = M * i + d * s + l * a - b * r), (e[7] = d * i - l * r - b * a - M * s), e ); } static rotateByQuatAppend(e, t, n) { let r = n[0], a = n[1], s = n[2], i = n[3], c = t[0], y = t[1], L = t[2], k = t[3]; return ( (e[0] = c * i + k * r + y * s - L * a), (e[1] = y * i + k * a + L * r - c * s), (e[2] = L * i + k * s + c * a - y * r), (e[3] = k * i - c * r - y * a - L * s), (c = t[4]), (y = t[5]), (L = t[6]), (k = t[7]), (e[4] = c * i + k * r + y * s - L * a), (e[5] = y * i + k * a + L * r - c * s), (e[6] = L * i + k * s + c * a - y * r), (e[7] = k * i - c * r - y * a - L * s), e ); } static rotateByQuatPrepend(e, t, n) { let r = t[0], a = t[1], s = t[2], i = t[3], c = n[0], y = n[1], L = n[2], k = n[3]; return ( (e[0] = r * k + i * c + a * L - s * y), (e[1] = a * k + i * y + s * c - r * L), (e[2] = s * k + i * L + r * y - a * c), (e[3] = i * k - r * c - a * y - s * L), (c = n[4]), (y = n[5]), (L = n[6]), (k = n[7]), (e[4] = r * k + i * c + a * L - s * y), (e[5] = a * k + i * y + s * c - r * L), (e[6] = s * k + i * L + r * y - a * c), (e[7] = i * k - r * c - a * y - s * L), e ); } static rotateAroundAxis(e, t, n, r) { if (Math.abs(r) < 1e-6) return h.copy(e, t); let a = Math.sqrt(n[0] * n[0] + n[1] * n[1] + n[2] * n[2]); r = r * 0.5; let s = Math.sin(r), i = (s * n[0]) / a, c = (s * n[1]) / a, y = (s * n[2]) / a, L = Math.cos(r), k = t[0], l = t[1], b = t[2], M = t[3]; (e[0] = k * L + M * i + l * y - b * c), (e[1] = l * L + M * c + b * i - k * y), (e[2] = b * L + M * y + k * c - l * i), (e[3] = M * L - k * i - l * c - b * y); let d = t[4], m = t[5], o = t[6], x = t[7]; return ( (e[4] = d * L + x * i + m * y - o * c), (e[5] = m * L + x * c + o * i - d * y), (e[6] = o * L + x * y + d * c - m * i), (e[7] = x * L - d * i - m * c - o * y), e ); } static add(e, t, n) { return ( (e[0] = t[0] + n[0]), (e[1] = t[1] + n[1]), (e[2] = t[2] + n[2]), (e[3] = t[3] + n[3]), (e[4] = t[4] + n[4]), (e[5] = t[5] + n[5]), (e[6] = t[6] + n[6]), (e[7] = t[7] + n[7]), e ); } static multiply(e, t, n) { let r = t[0], a = t[1], s = t[2], i = t[3], c = n[4], y = n[5], L = n[6], k = n[7], l = t[4], b = t[5], M = t[6], d = t[7], m = n[0], o = n[1], x = n[2], z = n[3]; return ( (e[0] = r * z + i * m + a * x - s * o), (e[1] = a * z + i * o + s * m - r * x), (e[2] = s * z + i * x + r * o - a * m), (e[3] = i * z - r * m - a * o - s * x), (e[4] = r * k + i * c + a * L - s * y + l * z + d * m + b * x - M * o), (e[5] = a * k + i * y + s * c - r * L + b * z + d * o + M * m - l * x), (e[6] = s * k + i * L + r * y - a * c + M * z + d * x + l * o - b * m), (e[7] = i * k - r * c - a * y - s * L + d * z - l * m - b * o - M * x), e ); } static mul(e, t, n) { return e; } static scale(e, t, n) { return ( (e[0] = t[0] * n), (e[1] = t[1] * n), (e[2] = t[2] * n), (e[3] = t[3] * n), (e[4] = t[4] * n), (e[5] = t[5] * n), (e[6] = t[6] * n), (e[7] = t[7] * n), e ); } static dot(e, t) { return 0; } static lerp(e, t, n, r) { let a = 1 - r; return ( h.dot(t, n) < 0 && (r = -r), (e[0] = t[0] * a + n[0] * r), (e[1] = t[1] * a + n[1] * r), (e[2] = t[2] * a + n[2] * r), (e[3] = t[3] * a + n[3] * r), (e[4] = t[4] * a + n[4] * r), (e[5] = t[5] * a + n[5] * r), (e[6] = t[6] * a + n[6] * r), (e[7] = t[7] * a + n[7] * r), e ); } static invert(e, t) { let n = h.squaredLength(t); return ( (e[0] = -t[0] / n), (e[1] = -t[1] / n), (e[2] = -t[2] / n), (e[3] = t[3] / n), (e[4] = -t[4] / n), (e[5] = -t[5] / n), (e[6] = -t[6] / n), (e[7] = t[7] / n), e ); } static conjugate(e, t) { return ( (e[0] = -t[0]), (e[1] = -t[1]), (e[2] = -t[2]), (e[3] = t[3]), (e[4] = -t[4]), (e[5] = -t[5]), (e[6] = -t[6]), (e[7] = t[7]), e ); } static magnitude(e) { return 0; } static mag(e) { return 0; } static length(e) { return 0; } static len(e) { return 0; } static squaredLength(e) { return 0; } static sqrLen(e) { return 0; } static normalize(e, t) { let n = h.squaredLength(t); if (n > 0) { n = Math.sqrt(n); let r = t[0] / n, a = t[1] / n, s = t[2] / n, i = t[3] / n, c = t[4], y = t[5], L = t[6], k = t[7], l = r * c + a * y + s * L + i * k; (e[0] = r), (e[1] = a), (e[2] = s), (e[3] = i), (e[4] = (c - r * l) / n), (e[5] = (y - a * l) / n), (e[6] = (L - s * l) / n), (e[7] = (k - i * l) / n); } return e; } static str(e) { return `Quat2(${e.join(', ')})`; } static exactEquals(e, t) { return ( e[0] === t[0] && e[1] === t[1] && e[2] === t[2] && e[3] === t[3] && e[4] === t[4] && e[5] === t[5] && e[6] === t[6] && e[7] === t[7] ); } static equals(e, t) { let n = e[0], r = e[1], a = e[2], s = e[3], i = e[4], c = e[5], y = e[6], L = e[7], k = t[0], l = t[1], b = t[2], M = t[3], d = t[4], m = t[5], o = t[6], x = t[7]; return ( Math.abs(n - k) <= 1e-6 * Math.max(1, Math.abs(n), Math.abs(k)) && Math.abs(r - l) <= 1e-6 * Math.max(1, Math.abs(r), Math.abs(l)) && Math.abs(a - b) <= 1e-6 * Math.max(1, Math.abs(a), Math.abs(b)) && Math.abs(s - M) <= 1e-6 * Math.max(1, Math.abs(s), Math.abs(M)) && Math.abs(i - d) <= 1e-6 * Math.max(1, Math.abs(i), Math.abs(d)) && Math.abs(c - m) <= 1e-6 * Math.max(1, Math.abs(c), Math.abs(m)) && Math.abs(y - o) <= 1e-6 * Math.max(1, Math.abs(y), Math.abs(o)) && Math.abs(L - x) <= 1e-6 * Math.max(1, Math.abs(L), Math.abs(x)) ); } }, se = new Float32Array(4), ie = new Float32Array(3); P.dot = I.dot; P.squaredLength = I.squaredLength; P.sqrLen = I.squaredLength; P.mag = I.magnitude; P.length = I.magnitude; P.len = I.magnitude; P.mul = P.multiply; var oe = P; var S = class h extends Float32Array { static BYTE_LENGTH = 2 * Float32Array.BYTES_PER_ELEMENT; constructor(...e) { switch (e.length) { case 2: { let t = e[0]; typeof t == 'number' ? super([t, e[1]]) : super(t, e[1], 2); break; } case 1: { let t = e[0]; typeof t == 'number' ? super([t, t]) : super(t, 0, 2); break; } default: super(2); break; } } get x() { return this[0]; } set x(e) { this[0] = e; } get y() { return this[1]; } set y(e) { this[1] = e; } get r() { return this[0]; } set r(e) { this[0] = e; } get g() { return this[1]; } set g(e) { this[1] = e; } get magnitude() { return Math.hypot(this[0], this[1]); } get mag() { return this.magnitude; } get squaredMagnitude() { let e = this[0], t = this[1]; return e * e + t * t; } get sqrMag() { return this.squaredMagnitude; } get str() { return h.str(this); } copy(e) { return this.set(e), this; } add(e) { return (this[0] += e[0]), (this[1] += e[1]), this; } subtract(e) { return (this[0] -= e[0]), (this[1] -= e[1]), this; } sub(e) { return this; } multiply(e) { return (this[0] *= e[0]), (this[1] *= e[1]), this; } mul(e) { return this; } divide(e) { return (this[0] /= e[0]), (this[1] /= e[1]), this; } div(e) { return this; } scale(e) { return (this[0] *= e), (this[1] *= e), this; } scaleAndAdd(e, t) { return (this[0] += e[0] * t), (this[1] += e[1] * t), this; } distance(e) { return h.distance(this, e); } dist(e) { return 0; } squaredDistance(e) { return h.squaredDistance(this, e); } sqrDist(e) { return 0; } negate() { return (this[0] *= -1), (this[1] *= -1), this; } invert() { return (this[0] = 1 / this[0]), (this[1] = 1 / this[1]), this; } abs() { return ( (this[0] = Math.abs(this[0])), (this[1] = Math.abs(this[1])), this ); } dot(e) { return this[0] * e[0] + this[1] * e[1]; } normalize() { return h.normalize(this, this); } static create() { return new h(); } static clone(e) { return new h(e); } static fromValues(e, t) { return new h(e, t); } static copy(e, t) { return (e[0] = t[0]), (e[1] = t[1]), e; } static set(e, t, n) { return (e[0] = t), (e[1] = n), e; } static add(e, t, n) { return (e[0] = t[0] + n[0]), (e[1] = t[1] + n[1]), e; } static subtract(e, t, n) { return (e[0] = t[0] - n[0]), (e[1] = t[1] - n[1]), e; } static sub(e, t, n) { return [0, 0]; } static multiply(e, t, n) { return (e[0] = t[0] * n[0]), (e[1] = t[1] * n[1]), e; } static mul(e, t, n) { return [0, 0]; } static divide(e, t, n) { return (e[0] = t[0] / n[0]), (e[1] = t[1] / n[1]), e; } static div(e, t, n) { return [0, 0]; } static ceil(e, t) { return (e[0] = Math.ceil(t[0])), (e[1] = Math.ceil(t[1])), e; } static floor(e, t) { return (e[0] = Math.floor(t[0])), (e[1] = Math.floor(t[1])), e; } static min(e, t, n) { return (e[0] = Math.min(t[0], n[0])), (e[1] = Math.min(t[1], n[1])), e; } static max(e, t, n) { return (e[0] = Math.max(t[0], n[0])), (e[1] = Math.max(t[1], n[1])), e; } static round(e, t) { return (e[0] = Math.round(t[0])), (e[1] = Math.round(t[1])), e; } static scale(e, t, n) { return (e[0] = t[0] * n), (e[1] = t[1] * n), e; } static scaleAndAdd(e, t, n, r) { return (e[0] = t[0] + n[0] * r), (e[1] = t[1] + n[1] * r), e; } static distance(e, t) { return Math.hypot(t[0] - e[0], t[1] - e[1]); } static dist(e, t) { return 0; } static squaredDistance(e, t) { let n = t[0] - e[0], r = t[1] - e[1]; return n * n + r * r; } static sqrDist(e, t) { return 0; } static magnitude(e) { let t = e[0], n = e[1]; return Math.sqrt(t * t + n * n); } static mag(e) { return 0; } static length(e) { return 0; } static len(e) { return 0; } static squaredLength(e) { let t = e[0], n = e[1]; return t * t + n * n; } static sqrLen(e, t) { return 0; } static negate(e, t) { return (e[0] = -t[0]), (e[1] = -t[1]), e; } static inverse(e, t) { return (e[0] = 1 / t[0]), (e[1] = 1 / t[1]), e; } static abs(e, t) { return (e[0] = Math.abs(t[0])), (e[1] = Math.abs(t[1])), e; } static normalize(e, t) { let n = t[0], r = t[1], a = n * n + r * r; return ( a > 0 && (a = 1 / Math.sqrt(a)), (e[0] = t[0] * a), (e[1] = t[1] * a), e ); } static dot(e, t) { return e[0] * t[0] + e[1] * t[1]; } static cross(e, t, n) { let r = t[0] * n[1] - t[1] * n[0]; return (e[0] = e[1] = 0), (e[2] = r), e; } static lerp(e, t, n, r) { let a = t[0], s = t[1]; return (e[0] = a + r * (n[0] - a)), (e[1] = s + r * (n[1] - s)), e; } static transformMat2(e, t, n) { let r = t[0], a = t[1]; return (e[0] = n[0] * r + n[2] * a), (e[1] = n[1] * r + n[3] * a), e; } static transformMat2d(e, t, n) { let r = t[0], a = t[1]; return ( (e[0] = n[0] * r + n[2] * a + n[4]), (e[1] = n[1] * r + n[3] * a + n[5]), e ); } static transformMat3(e, t, n) { let r = t[0], a = t[1]; return ( (e[0] = n[0] * r + n[3] * a + n[6]), (e[1] = n[1] * r + n[4] * a + n[7]), e ); } static transformMat4(e, t, n) { let r = t[0], a = t[1]; return ( (e[0] = n[0] * r + n[4] * a + n[12]), (e[1] = n[1] * r + n[5] * a + n[13]), e ); } static rotate(e, t, n, r) { let a = t[0] - n[0], s = t[1] - n[1], i = Math.sin(r), c = Math.cos(r); return (e[0] = a * c - s * i + n[0]), (e[1] = a * i + s * c + n[1]), e; } static angle(e, t) { let n = e[0], r = e[1], a = t[0], s = t[1], i = Math.sqrt(n * n + r * r) * Math.sqrt(a * a + s * s), c = i && (n * a + r * s) / i; return Math.acos(Math.min(Math.max(c, -1), 1)); } static zero(e) { return (e[0] = 0), (e[1] = 0), e; } static exactEquals(e, t) { return e[0] === t[0] && e[1] === t[1]; } static equals(e, t) { let n = e[0], r = e[1], a = t[0], s = t[1]; return ( Math.abs(n - a) <= 1e-6 * Math.max(1, Math.abs(n), Math.abs(a)) && Math.abs(r - s) <= 1e-6 * Math.max(1, Math.abs(r), Math.abs(s)) ); } static str(e) { return `Vec2(${e.join(', ')})`; } }; S.prototype.sub = S.prototype.subtract; S.prototype.mul = S.prototype.multiply; S.prototype.div = S.prototype.divide; S.prototype.dist = S.prototype.distance; S.prototype.sqrDist = S.prototype.squaredDistance; S.sub = S.subtract; S.mul = S.multiply; S.div = S.divide; S.dist = S.distance; S.sqrDist = S.squaredDistance; S.sqrLen = S.squaredLength; S.mag = S.magnitude; S.length = S.magnitude; S.len = S.magnitude; var xe = S; var Re = [ 'xx', 'xy', 'yx', 'yy', 'xxx', 'xxy', 'xyx', 'xyy', 'yxx', 'yxy', 'yyx', 'yyy', 'xxxx', 'xxxy', 'xxyx', 'xxyy', 'xyxx', 'xyxy', 'xyyx', 'xyyy', 'yxxx', 'yxxy', 'yxyx', 'yxyy', 'yyxx', 'yyxy', 'yyyx', 'yyyy', 'rr', 'rg', 'gr', 'gg', 'rrr', 'rrg', 'rgr', 'rgg', 'grr', 'grg', 'ggr', 'ggg', 'rrrr', 'rrrg', 'rrgr', 'rrgg', 'rgrr', 'rgrg', 'rggr', 'rggg', 'grrr', 'grrg', 'grgr', 'grgg', 'ggrr', 'ggrg', 'gggr', 'gggg', ], Ve = [ 'xz', 'yz', 'zx', 'zy', 'zz', 'xxz', 'xyz', 'xzx', 'xzy', 'xzz', 'yxz', 'yyz', 'yzx', 'yzy', 'yzz', 'zxx', 'zxy', 'zxz', 'zyx', 'zyy', 'zyz', 'zzx', 'zzy', 'zzz', 'xxxz', 'xxyz', 'xxzx', 'xxzy', 'xxzz', 'xyxz', 'xyyz', 'xyzx', 'xyzy', 'xyzz', 'xzxx', 'xzxy', 'xzxz', 'xzyx', 'xzyy', 'xzyz', 'xzzx', 'xzzy', 'xzzz', 'yxxz', 'yxyz', 'yxzx', 'yxzy', 'yxzz', 'yyxz', 'yyyz', 'yyzx', 'yyzy', 'yyzz', 'yzxx', 'yzxy', 'yzxz', 'yzyx', 'yzyy', 'yzyz', 'yzzx', 'yzzy', 'yzzz', 'zxxx', 'zxxy', 'zxxz', 'zxyx', 'zxyy', 'zxyz', 'zxzx', 'zxzy', 'zxzz', 'zyxx', 'zyxy', 'zyxz', 'zyyx', 'zyyy', 'zyyz', 'zyzx', 'zyzy', 'zyzz', 'zzxx', 'zzxy', 'zzxz', 'zzyx', 'zzyy', 'zzyz', 'zzzx', 'zzzy', 'zzzz', 'rb', 'gb', 'br', 'bg', 'bb', 'rrb', 'rgb', 'rbr', 'rbg', 'rbb', 'grb', 'ggb', 'gbr', 'gbg', 'gbb', 'brr', 'brg', 'brb', 'bgr', 'bgg', 'bgb', 'bbr', 'bbg', 'bbb', 'rrrb', 'rrgb', 'rrbr', 'rrbg', 'rrbb', 'rgrb', 'rggb', 'rgbr', 'rgbg', 'rgbb', 'rbrr', 'rbrg', 'rbrb', 'rbgr', 'rbgg', 'rbgb', 'rbbr', 'rbbg', 'rbbb', 'grrb', 'grgb', 'grbr', 'grbg', 'grbb', 'ggrb', 'gggb', 'ggbr', 'ggbg', 'ggbb', 'gbrr', 'gbrg', 'gbrb', 'gbgr', 'gbgg', 'gbgb', 'gbbr', 'gbbg', 'gbbb', 'brrr', 'brrg', 'brrb', 'brgr', 'brgg', 'brgb', 'brbr', 'brbg', 'brbb', 'bgrr', 'bgrg', 'bgrb', 'bggr', 'bggg', 'bggb', 'bgbr', 'bgbg', 'bgbb', 'bbrr', 'bbrg', 'bbrb', 'bbgr', 'bbgg', 'bbgb', 'bbbr', 'bbbg', 'bbbb', ], ge = [ 'xw', 'yw', 'zw', 'wx', 'wy', 'wz', 'ww', 'xxw', 'xyw', 'xzw', 'xwx', 'xwy', 'xwz', 'xww', 'yxw', 'yyw', 'yzw', 'ywx', 'ywy', 'ywz', 'yww', 'zxw', 'zyw', 'zzw', 'zwx', 'zwy', 'zwz', 'zww', 'wxx', 'wxy', 'wxz', 'wxw', 'wyx', 'wyy', 'wyz', 'wyw', 'wzx', 'wzy', 'wzz', 'wzw', 'wwx', 'wwy', 'wwz', 'www', 'xxxw', 'xxyw', 'xxzw', 'xxwx', 'xxwy', 'xxwz', 'xxww', 'xyxw', 'xyyw', 'xyzw', 'xywx', 'xywy', 'xywz', 'xyww', 'xzxw', 'xzyw', 'xzzw', 'xzwx', 'xzwy', 'xzwz', 'xzww', 'xwxx', 'xwxy', 'xwxz', 'xwxw', 'xwyx', 'xwyy', 'xwyz', 'xwyw', 'xwzx', 'xwzy', 'xwzz', 'xwzw', 'xwwx', 'xwwy', 'xwwz', 'xwww', 'yxxw', 'yxyw', 'yxzw', 'yxwx', 'yxwy', 'yxwz', 'yxww', 'yyxw', 'yyyw', 'yyzw', 'yywx', 'yywy', 'yywz', 'yyww', 'yzxw', 'yzyw', 'yzzw', 'yzwx', 'yzwy', 'yzwz', 'yzww', 'ywxx', 'ywxy', 'ywxz', 'ywxw', 'ywyx', 'ywyy', 'ywyz', 'ywyw', 'ywzx', 'ywzy', 'ywzz', 'ywzw', 'ywwx', 'ywwy', 'ywwz', 'ywww', 'zxxw', 'zxyw', 'zxzw', 'zxwx', 'zxwy', 'zxwz', 'zxww', 'zyxw', 'zyyw', 'zyzw', 'zywx', 'zywy', 'zywz', 'zyww', 'zzxw', 'zzyw', 'zzzw', 'zzwx', 'zzwy', 'zzwz', 'zzww', 'zwxx', 'zwxy', 'zwxz', 'zwxw', 'zwyx', 'zwyy', 'zwyz', 'zwyw', 'zwzx', 'zwzy', 'zwzz', 'zwzw', 'zwwx', 'zwwy', 'zwwz', 'zwww', 'wxxx', 'wxxy', 'wxxz', 'wxxw', 'wxyx', 'wxyy', 'wxyz', 'wxyw', 'wxzx', 'wxzy', 'wxzz', 'wxzw', 'wxwx', 'wxwy', 'wxwz', 'wxww', 'wyxx', 'wyxy', 'wyxz', 'wyxw', 'wyyx', 'wyyy', 'wyyz', 'wyyw', 'wyzx', 'wyzy', 'wyzz', 'wyzw', 'wywx', 'wywy', 'wywz', 'wyww', 'wzxx', 'wzxy', 'wzxz', 'wzxw', 'wzyx', 'wzyy', 'wzyz', 'wzyw', 'wzzx', 'wzzy', 'wzzz', 'wzzw', 'wzwx', 'wzwy', 'wzwz', 'wzww', 'wwxx', 'wwxy', 'wwxz', 'wwxw', 'wwyx', 'wwyy', 'wwyz', 'wwyw', 'wwzx', 'wwzy', 'wwzz', 'wwzw', 'wwwx', 'wwwy', 'wwwz', 'wwww', 'ra', 'ga', 'ba', 'ar', 'ag', 'ab', 'aa', 'rra', 'rga', 'rba', 'rar', 'rag', 'rab', 'raa', 'gra', 'gga', 'gba', 'gar', 'gag', 'gab', 'gaa', 'bra', 'bga', 'bba', 'bar', 'bag', 'bab', 'baa', 'arr', 'arg', 'arb', 'ara', 'agr', 'agg', 'agb', 'aga', 'abr', 'abg', 'abb', 'aba', 'aar', 'aag', 'aab', 'aaa', 'rrra', 'rrga', 'rrba', 'rrar', 'rrag', 'rrab', 'rraa', 'rgra', 'rgga', 'rgba', 'rgar', 'rgag', 'rgab', 'rgaa', 'rbra', 'rbga', 'rbba', 'rbar', 'rbag', 'rbab', 'rbaa', 'rarr', 'rarg', 'rarb', 'rara', 'ragr', 'ragg', 'ragb', 'raga', 'rabr', 'rabg', 'rabb', 'raba', 'raar', 'raag', 'raab', 'raaa', 'grra', 'grga', 'grba', 'grar', 'grag', 'grab', 'graa', 'ggra', 'ggga', 'ggba', 'ggar', 'ggag', 'ggab', 'ggaa', 'gbra', 'gbga', 'gbba', 'gbar', 'gbag', 'gbab', 'gbaa', 'garr', 'garg', 'garb', 'gara', 'gagr', 'gagg', 'gagb', 'gaga', 'gabr', 'gabg', 'gabb', 'gaba', 'gaar', 'gaag', 'gaab', 'gaaa', 'brra', 'brga', 'brba', 'brar', 'brag', 'brab', 'braa', 'bgra', 'bgga', 'bgba', 'bgar', 'bgag', 'bgab', 'bgaa', 'bbra', 'bbga', 'bbba', 'bbar', 'bbag', 'bbab', 'bbaa', 'barr', 'barg', 'barb', 'bara', 'bagr', 'bagg', 'bagb', 'baga', 'babr', 'babg', 'babb', 'baba', 'baar', 'baag', 'baab', 'baaa', 'arrr', 'arrg', 'arrb', 'arra', 'argr', 'argg', 'argb', 'arga', 'arbr', 'arbg', 'arbb', 'arba', 'arar', 'arag', 'arab', 'araa', 'agrr', 'agrg', 'agrb', 'agra', 'aggr', 'aggg', 'aggb', 'agga', 'agbr', 'agbg', 'agbb', 'agba', 'agar', 'agag', 'agab', 'agaa', 'abrr', 'abrg', 'abrb', 'abra', 'abgr', 'abgg', 'abgb', 'abga', 'abbr', 'abbg', 'abbb', 'abba', 'abar', 'abag', 'abab', 'abaa', 'aarr', 'aarg', 'aarb', 'aara', 'aagr', 'aagg', 'aagb', 'aaga', 'aabr', 'aabg', 'aabb', 'aaba', 'aaar', 'aaag', 'aaab', 'aaaa', ], $ = { x: 0, r: 0, y: 1, g: 1, z: 2, b: 2, w: 3, a: 3 }; function J(h) { switch (h.length) { case 2: return function () { return new S(this[$[h[0]]], this[$[h[1]]]); }; case 3: return function () { return new A(this[$[h[0]]], this[$[h[1]]], this[$[h[2]]]); }; case 4: return function () { return new q( this[$[h[0]]], this[$[h[1]]], this[$[h[2]]], this[$[h[3]]], ); }; } } var ce = !1; function ze() { if (!ce) { for (let h of Re) { let e = J(h); Object.defineProperty(S.prototype, h, { get: e }), Object.defineProperty(A.prototype, h, { get: e }), Object.defineProperty(q.prototype, h, { get: e }); } for (let h of Ve) { let e = J(h); Object.defineProperty(A.prototype, h, { get: e }), Object.defineProperty(q.prototype, h, { get: e }); } for (let h of ge) { let e = J(h); Object.defineProperty(q.prototype, h, { get: e }); } ce = !0; } } export { ze as EnableSwizzles, j as Mat2, C as Mat2d, X as Mat3, O as Mat4, I as Quat, P as Quat2, S as Vec2, A as Vec3, q as Vec4, ye as mat2, Le as mat2d, ke as mat3, le as mat4, me as quat, oe as quat2, xe as vec2, Me as vec3, be as vec4, };